首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blanca CM  Saloma C 《Applied optics》2001,40(16):2722-2729
We study the performance of two-color excitation (2CE) fluorescence microscopy [Opt. Lett. 24, 1505 (1999)] in turbid media of different densities and anisotropy. Excitation is achieved with two confocal excitation beams of wavelengths lambda(1) and lambda(2), which are separated by an angular displacement theta, where lambda(1) not equal lambda(2), 1/lambda(e) = 1/lambda(1) + 1/lambda(2), and lambda(e) is the single-photon excitation wavelength of the sample. 2CE fluorescence is generated only in regions of the sample where the two excitation beams overlap. The 2CE fluorescence intensity is proportional to the product of the two excitation intensities and could be detected with a large-area photodetector. The requirement of spatiotemporal simultaneity for the two excitation beams makes 2CE fluorescence imaging a promising tool for observing microscopic objects in a highly scattering medium. Optical scattering asymmetrically broadens the excitation point-spread function and toward the side of the focusing lens that leads to the contrast deterioration of the fluorescence image in single- or two-photon (lambda(1) = lambda(2)) excitation. Image degradation is caused by the decrease in the excitation energy density at the geometrical focus and by the increase in background fluorescence from the out-of-focus planes. In a beam configuration with theta not equal 0, 2CE fluorescence imaging is robust against the deleterious effects of scattering on the excitation-beam distribution. Scattering only decreases the available energy density at the geometrical focus and does not increase the background noise. For both isotropic and anisotropic scattering media the performance of 2CE imaging is studied with a Monte Carlo simulation for theta = 0, pi/2, and pi, and at different h/d(s) values where h is the scattering depth and d(s) is the mean-free path of the scattering medium.  相似文献   

2.
Blanca CM  Saloma C 《Applied optics》1998,37(34):8092-8102
The behavior of two-photon fluorescence imaging through a scattering medium is analyzed by use of the Monte Carlo technique. The axial and transverse distributions of the excitation photons in the focused Gaussian beam are derived for both isotropic and anisotropic scatterers at different numerical apertures and at various ratios of the scattering depth with the mean free path. The two-photon fluorescence profiles of the sample are determined from the square of the normalized excitation intensity distributions. For the same lens aperture and scattering medium, two-photon fluorescence imaging offers a sharper and less aberrated axial response than that of single-photon confocal fluorescence imaging. The contrast in the corresponding transverse fluorescence profile is also significantly higher. Also presented are results comparing the effects of isotropic and anisotropic scattering media in confocal reflection imaging. The convergence properties of the Monte Carlo simulation are also discussed.  相似文献   

3.
Blanca CM  Saloma C 《Applied optics》2000,39(28):5187-5193
The performance of third-harmonic generation (THG) microscopy in highly scattering media is analyzed with the Monte Carlo technique. The three-dimensional point-spread function (PSF) of the laser-scanning THG microscope with a pulsed excitation light source is derived for both isotropic and anisotropic scattering media and at different h/d(s) values, where h is the scattering depth as measured from the geometric focus of the objective lens and d(s) is the mean free path of the scattering medium. The generated THG signal is detected by a large-area photodetector. The PSF of the THG microscope is given by the third power of the normalized distribution of the excitation beam near the beam focus. The behavior of the temporal broadening of the excitation pulse on the generated THG signal is also analyzed as a function of h/d(s). The relative advantages and disadvantages of the THG microscope relative to the two-photon fluorescence microscope are discussed thoroughly.  相似文献   

4.
A numerical model was developed to simulate the effects of tissue optical properties, objective numerical aperture (N.A.), and instrument performance on two-photon-excited fluorescence imaging of turbid samples. Model data are compared with measurements of fluorescent microspheres in a tissuelike scattering phantom. Our results show that the measured two-photon-excited signal decays exponentially with increasing focal depth. The overall decay constant is a function of absorption and scattering parameters at both excitation and emission wavelengths. The generation of two-photon fluorescence is shown to be independent of the scattering anisotropy, g, except for g > 0.95. The N.A. for which the maximum signal is collected varies with depth, although this effect is not seen until the focal plane is greater than two scattering mean free paths into the sample. Overall, measurements and model results indicate that resolution in two-photon microscopy is dependent solely on the ability to deliver sufficient ballistic photon density to the focal volume. As a result we show that lateral resolution in two-photon microscopy is largely unaffected by tissue optical properties in the range typically encountered in soft tissues, although the maximum imaging depth is strongly dependent on absorption and scattering coefficients, scattering anisotropy, and objective N.A..  相似文献   

5.
Near-field scanning optical microscopy (NSOM) is a high-resolution scanning probe technique capable of obtaining simultaneous optical and topographic images with spatial resolution of tens of nanometers. We have integrated time-correlated single-photon counting and NSOM to obtain images of fluorescence lifetimes with high spatial resolution. The technique can be used to measure either full fluorescence lifetime decays at individual spots with a spatial resolution of <100 nm or NSOM fluorescence images using fluorescence lifetime as a contrast mechanism. For imaging, a pulsed Ti:sapphire laser was used for sample excitation and fluorescent photons were time correlated and sorted into two time delay bins. The intensity in these bins can be used to estimate the fluorescence lifetime at each pixel in the image. The technique is demonstrated on thin films of poly(9,9'-dioctylfluorene) (PDOF). The fluorescence of PDOF is the results of both inter- and intrapolymer emitting species that can be easily distinguished in the time domain. Fluorescence lifetime imaging with near-field scanning optical microscopy demonstrates how photochemical degradation of the polymer leads to a quenching of short-delay intrachain emission and an increase in the long-delay photons associated with interpolymer emitting species. The images also show how intra- and interpolymer species are uniformly distributed in the films.  相似文献   

6.
Daria VR  Saloma C  Kawata S 《Applied optics》2000,39(28):5244-5255
To gain a better understanding of the spatiotemporal problems that are encountered in two-photon excitation fluorescence imaging through highly scattering media, we investigate how diffraction affects the three-dimensional intensity distribution of a focused, pulsed optical beam propagating inside a scattering medium. In practice, the full potential of the two-photon excitation fluorescence imaging is unrealized at long scattering depths, owing to the unwanted temporal and spatial broadening of the femtosecond excitation light pulse that reduces the energy density at the geometric focus while it increases the excitation energy density in the out-of-focus regions. To analyze the excitation intensity distribution, we modify the Monte Carlo-based photon-transport model to a semi-quantum-mechanical representation that combines the wave properties of light with the particle behavior of the propagating photons. In our model the propagating photon is represented by a plane wave with its propagation direction in the scattering medium determined by the Monte Carlo technique. The intensity distribution in the focal region is given by the square of the linear superposition of the various plane waves that arrive at different incident angles and optical path lengths. In the absence of scattering, the propagation model yields the intensity distribution that is predicted by the Huygens-Fresnel principle. We quantify the decrease of the energy density delivered at the geometric focus as a function of the optical depth to the mean-free-path ratio that yields the average number of scattering events that a photon encounters as it propagates toward the focus. Both isotropic and anisotropic scattering media are considered. Three values for the numerical aperture (NA) of the focusing lens are considered: NA = 0.25, 0.5, 0.75.  相似文献   

7.
Harmonic chirp imaging method for ultrasound contrast agent   总被引:2,自引:0,他引:2  
Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.  相似文献   

8.
Upconversion nanoparticles (UCNs) are nanoparticles that are excited in the near infrared (NIR) region with emission in the visible or NIR regions. This makes these particles attractive for use in biological imaging as the NIR light can penetrate the tissue better with minimal absorption/scattering. This paper discusses the study of the depth to which cells can be imaged using these nanoparticles. UCNs with NaYF(4) nanocrystals doped with Yb(3+), Er(3+) (visible emission)/Yb(3+), Tm(3+) (NIR emission) were synthesized and modified with silica enabling their dispersion in water and conjugation of biomolecules to their surface. The size of the sample was characterized using transmission electron microscopy and the fluorescence measured using a fluorescence spectrometer at an excitation of 980 nm. Tissue phantoms were prepared by reported methods to mimic skin/muscle tissue and it was observed that the cells could be imaged up to a depth of 3 mm using the NIR emitting UCNs. Further, the depth of detection was evaluated for UCNs targeted to gap junctions formed between cardiac cells.  相似文献   

9.
A novel route for early cataract diagnostics is investigated based on the excitation of tryptophan fluorescence (TF) at the red edge of its absorption band at 317 nm. This allows penetration through the cornea and aqueous humour to provide excitation of the ocular lens. The steepness of the red edge gives the potential of depth control of the lens excitation. Such wavelength selection targets the population of tryptophan residues, side chains of which are exposed to the polar aqueous environment. The TF emissions around 350 nm of a series of UV-irradiated as well as control lenses were observed. TF spectra of the UV cases were red-shifted and the intensity decreased with the radiation dose. In contrast, intensity of non-tryptophan emission with maximum at 435 nm exhibited an increase suggesting photochemical conversion of the tryptophan population to 435 nm emitting molecules. We demonstrate that the ratio of intensities at 435 nm to that around 350 nm can be used as a measure of early structural changes caused by UV irradiation in the lens by comparison with images from a conventional slit-lamp, which can only detect defects of optical wavelength size. Such diagnostics at a molecular level could aid research on cataract risk investigation and possible pharmacological research as well as assisting surgical lens replacement decisions.  相似文献   

10.
Individual fluorescent polystyrene nanospheres (<10-100-nm diameter) and individual fluorescently labeled DNA molecules were dispersed on mica and analyzed using time-resolved fluorescence spectroscopy and atomic force microscopy (AFM). Spatial correlation of the fluorescence and AFM measurements was accomplished by (1) positioning a single fluorescent particle into the near diffraction-limited confocal excitation region of the optical microscope, (2) recording the time-resolved fluorescence emission, and (3) measuring the intensity of the excitation laser light scattered from the apex of an AFM probe tip and the AFM topography as a function of the lateral position of the tip relative to the sample substrate. The latter measurements resulted in concurrent high-resolution (approximately 10-20 nm laterally) images of the laser excitation profile of the confocal microscope and the topography of the sample. Superposition of these optical and topographical images enabled unambiguous identification of the sample topography residing within the excitation region of the optical microscope, facilitating the identification and structural characterization of the nanoparticle(s) or biomolecule(s) responsible for the fluorescence signal observed in step 2. These measurements also provided the lateral position of the particles relative to the laser excitation profile and the surrounding topography with nanometer-scale precision and the relationship between the spectroscopic and structural properties of the particles. Extension of these methods to the study of other types of nanostructured materials is discussed.  相似文献   

11.
A three-dimensional (3D) variant of scanning micro X-ray fluorescence (XRF) is described and evaluated at the ID18F instrument of the European Synchrotron Radiation Facility (ESRF). The method is based on confocal excitation/detection using a polycapillary half-lens in front of the energy-dispersive detector. The experimental arrangement represents a significant generalization of regular two-dimensional (2D) scanning micro-XRF and employs a detector half-lens whose focus coincides with that of the focused incoming beam. The detection volume defined by the intersection of the exciting beam and the energy-dependent acceptance of the polycapillary optics is 100-350 mum(3). Minimum detection limits are sub-ppm, and sensitivities are comparable with regular scanning XRF. Next to the reduction of in-sample single/multiple scattering, the setup provides the possibility of sample depth scans with an energy-dependent resolution of 10-35 mum in the energy range of 3-23 keV and the possibility of performing 3D-XRF analysis by simple XYZ linear scanning. This provides a suitable alternative to X-ray fluorescence tomography. The method is illustrated with results of the analysis of solid inclusions in diamond and fluid inclusions in quartz.  相似文献   

12.
We have analyzed how the maximal imaging depth of two-photon microscopy in scattering samples depends on properties of the sample and the imaging system. We find that the imaging depth increases with increasing numerical aperture and staining inhomogeneity and with decreasing excitation-pulse duration and scattering anisotropy factor, but is ultimately limited by near-surface fluorescence with slight improvements possible using special detection strategies.  相似文献   

13.
Gan X  Gu M 《Applied optics》2000,39(10):1575-1579
Three-dimensional fluorescence spatial distributions under single-photon and two-photon excitation within a turbid medium are studied with Monte Carlo simulation. It is demonstrated that two-photon excitation has an advantage of producing much less fluorescence light outside the focal region compared with single-photon excitation. With the increase of the concentration of scattering particles in a turbid medium, the position of the maximum fluorescence intensity point shifts from the geometric focal region toward the medium surface. Further studies show that the optical sectioning property of two-photon fluorescence microscopy is degraded in thick turbid media or when the numerical aperture of an objective becomes low.  相似文献   

14.
The feasibility of employing fluorescent contrast agents to perform optical imaging in tissues and other scattering media has been examined through computational studies. Fluorescence lifetime and yield can give crucial information about local metabolite concentrations or environmental conditions within tissues. This information can be employed toward disease detection, diagnosis, and treatment if noninvasively quantitated from reemitted optical signals. However, the problem of inverse image reconstruction of fluorescence yield and lifetime is complicated because of the highly scattering nature of the tissue. Here a light propagation model employing the diffusion equation is used to account for the scattering of both the excitation and fluorescent light. Simulated measurements of frequency-domain parameters of fluorescent modulated ac amplitude and phase lag are used as inputs to an inverse image-reconstruction algorithm, which employs the diffusion model to predict frequency-domain measurements resulting from a modulated input at the phantom periphery. In the inverse image-reconstruction algorithm, a Newton-Raphson technique combined with a Marquardt algorithm is employed to converge on the fluorescent properties within the medium. The successful reconstruction of both the fluorescence yield and lifetime in the case of a heterogeneous fluorophore distribution within a scattering medium has been demonstrated without a priori information or without the necessity of obtaining absence images.  相似文献   

15.
High scattering in biological tissues makes fluorescence tomography inverse problem very challenging in thick medium. We describe an approach termed "temperature-modulated fluorescence tomography" that can acquire fluorescence images at focused ultrasound resolution. By utilizing recently emerged temperature sensitive fluorescence contrast agents, this technique provides fluorescence images with high resolution prior to any reconstruction process. We demonstrate that this technique is well suited to resolve small fluorescence targets located several centimeters deep in tissue.  相似文献   

16.
We present an experimental and theoretical study of confocal fluorescence polarization microscopy in turbid media. We have performed an experimental study using a fluorophore-embedded polymer rod immersed in aqueous suspensions of 0.1 and 0.5 microm diameter polystyrene microspheres. A Monte Carlo approach to simulate confocal fluorescence polarization imaging in scattering media is also presented. It incorporates a detailed model of polarized fluorescence generation that includes sampling of elliptical polarization, excited-state molecular rotational Brownian motion, and dipole fluorescence emission. Using both approaches, we determine the effects of the number of scattering events, target depth, photon scattering statistics, objective numerical aperture, and pinhole size on confocal anisotropy imaging. From this detailed analysis and comparison of experiment with simulation, we determine that fluorescence polarization is maintained to depths at which meaningful intensity images can be acquired.  相似文献   

17.
Li X  Chance B  Yodh AG 《Applied optics》1998,37(28):6833-6844
The fundamental limits for detection and characterization of fluorescent (phosphorescent) inhomogeneities embedded in tissuelike highly scattering turbid media are investigated. The absorption and fluorescence contrast introduced by exogenous fluorophores are also compared. Both analyses are based on practical signal-to-noise ratio considerations. For an object with fivefold fluorophore concentration and lifetime contrast with respect to the background tissue, we find the smallest detectable fluorescent object at 3-cm depth in tissuelike turbid media to be ~0.25 cm in radius, whereas the smallest characterizable object size is ~0.75 cm in radius, given a model with 1% amplitude and 0.5 degrees phase noise. We also find that, for fluorescence extinction coefficients epsilon 相似文献   

18.
Given the wavelength dependence of sample optical properties and the selective sampling of surface emission angles by noncontact imaging systems, differences in angular profiles due to excitation angle and optical properties can distort relative emission intensities acquired at different wavelengths. To investigate this potentiality, angular profiles of diffuse reflectance and fluorescence emission from turbid media were evaluated experimentally and by Monte Carlo simulation for a range of incident excitation angles and sample optical properties. For emission collected within the limits of a semi-infinite excitation region, normalized angular emission profiles are symmetric, roughly Lambertian, and only weakly dependent on sample optical properties for fluorescence at all excitation angles and for diffuse reflectance at small excitation angles relative to the surface normal. Fluorescence and diffuse reflectance within the emission plane orthogonal to the oblique component of the excitation also possess this symmetric form. Diffuse reflectance within the incidence plane is biased away from the excitation source for large excitation angles. The degree of bias depends on the scattering anisotropy and albedo of the sample and results from the correlation between photon directions upon entrance and emission. Given the strong dependence of the diffuse reflectance angular emission profile shape on incident excitation angle and sample optical properties, excitation and collection geometry has the potential to induce distortions within diffuse reflectance spectra unrelated to tissue characteristics.  相似文献   

19.
Abstract

Fluorescent microspheres of diameter 10μm embedded in a turbid medium consisting of polystyrene beads suspended in water are imaged under two-photon and single-photon excitation. A comparison of two-photon and single-photon fluorescence images shows that multiple scattering leads to a dominant limiting factor of the signal-to-noise ratio in the former case, while it results in a dominant limiting factor of resolution in the latter case. These results are qualitatively consistent with the predication by the Monte-Carlo simulation based on Mie scattering theory.  相似文献   

20.
Absolute fluorescence cross sections for Bacillus subtilis and B. cereus bacterial spores as both aqueous suspensions and aerosols were measured at a number of excitation wavelengths between 228 and 303 nm. The fluorescence was spectrally resolved at each excitation wavelength. We found that the optimum excitation wavelength for spore fluorescence is between 270 and 280 nm. The fluorescence cross section for aqueous suspensions is four times larger than for dry aerosols when measured under similar conditions. Measurements on wet aerosols showed an increase in fluorescence cross section over dry aerosols, indicating an enhancement of the fluorescence when the bacterial spores are wet. Mie scattering cross sections at 90 degrees to the direction of the incident radiation and extinction cross sections as a function of wavelength for B. subtilis suspensions and fluorescence cross sections for tryptophan are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号