共查询到20条相似文献,搜索用时 15 毫秒
1.
应用M-MIVM预测含钛渣系组元活度 总被引:1,自引:0,他引:1
在钢铁冶炼过程中,随着护炉钛材料和含钛铁矿石的应用,大量的含钛炉渣被生产出来。由于缺少多元含钛渣系的热力学数据,限制了钛资源综合利用技术的深入发展。因此,应用改进的分子相互作用体积模型(M-MIVM(FII)),预测了基础渣系Al2O3-CaO-SiO2、FeO-MnO-SiO2和含钛渣系FeO-MnO-TiO2、FeO-SiO2-TiO2、MnO-SiO2-TiO2、Al2O3-CaO-FeO-TiO2中各组元活度,并与试验值比较。结果表明,M-MIVM(FII)的预测值与试验值符合较好,6个体系总的平均相对误差为11%,该精度处于Turkdogan提出的30%以内的试验误差范围; M-MIVM(FII)在参数拟合与活度预测能力方面均优于MIVM,该模型对多元含钛熔渣体系组元活度具有更好的预测效果。在此基础上,应用M-MIVM(FII)预测Al2O3-CaO-SiO2-TiO2熔体中TiO2活度,并分析其影响因素。结果表明,TiO2活度预测值与试验值吻合良好,且随炉渣碱度、Al2O3含量的增加而降低,该规律与试验规律相一致。M-MIVM(FII)仅通过拟合子二元系活度或者直接由无限稀活度系数就能够预测多元熔体的热力学性质。 相似文献
2.
3.
4.
以促进2CaO·SiO_2-3CaO·P_2O_5含磷固溶体生成为目的的转炉非均相渣脱磷技术已被视为减少石灰使用量及提高脱磷效率的重要手段,而目前有关MgO对该含磷固溶体生成影响的研究较少,尤其对CaO-SiO_2-FeO-MgO-P_2O_5渣系中组元活度的变化规律还缺乏深入的认识。为此,本文基于炉渣的分子离子共存理论,建立了各组元的活度计算模型,并重点分析了不同因素对2CaO·SiO_2及3CaO·P_2O_5等组元活度的影响。结果表明:添加MgO易导致渣中2CaO·SiO_2活度的降低,不利于2CaO·SiO_2-3CaO·P_2O_5固溶体的生成;随着FeO含量的增大,渣中2CaO·SiO_2及3CaO·P_2O_5的活度均降低,易导致2CaO·SiO_2-3CaO·P_2O_5固溶体的生成量减少;当炉渣碱度增大时,3CaO·P_2O_5的活度逐渐降低,而2CaO·SiO_2的活度则呈先升高后降低的趋势;温度对炉渣中各组元活度的影响不显著。 相似文献
5.
利用熔渣分子—离子共存理论,研究了电渣重熔20%CaO-20%Al_2O_3-60%CaF_2渣系在冶炼过程中,由于吸收MgO、FeO、SiO_2等夹杂物后,在渣中形成了一定浓度的FeO,而使渣系具有向钢液传递[O]的能力,考察了1 550℃下FeO、MgO质量分数以及二元碱度w(CaO)/w(SiO_2)对FeO活度的影响;分析了该渣系在1 550、1 600、1 650、1 700、1 750和1 800℃下FeO活度随温度的变化情况,构建了20%CaO-20%Al_2O_3-60%CaF_2为基础渣系的六元渣系的FeO活度的模型.研究表明:FeO活度随二元碱度w(CaO)/w(SiO_2)的增加而先增大至趋于平缓后略微减小,在碱度为3.8达到最大;FeO活度随FeO质量分数增加而线性增加,高碱度时,随FeO质量分数增加FeO活度相近;碱度为1时,FeO的活度随MgO的质量分数增加而增大,随温度升高而增加,且MgO含量越高,FeO活度越大;当碱度增加到4、7、10时,FeO的活度随MgO的质量分数增加而减小,相同质量分数的MgO时,碱度越大,FeO活度值越小;碱度为4,MgO的质量分数为1%时,FeO活度达到最大值,高碱度时,温度升高,FeO活度基本保持不变,且同一温度下,碱度越大,FeO活度反而降低.工业试验表明,该模型可以直接利用渣系对金属熔体中氧含量变化进行预测,并对减小钢液中氧含量具有指导意义. 相似文献
6.
7.
依据分子离子共存理论建立了CaO-SiO2-FeO-P2O5-MnO脱磷渣系组元的活度计算模型,并对影响2CaO·SiO2-3CaO·P2O5含磷固溶体生成的组元活度变化规律进行了分析.结果表明:在渣中添加MnO会降低2CaO·SiO2和3FeO·P2O5等组元的活度,从而抑制含磷固溶体的生成;随着熔渣碱度的增大、w(FeO)的增加及温度的提高,2CaO·SiO2的活度均呈先升高后降低的趋势,因此,过高的碱度、w(FeO)及温度均不利于2CaO·SiO2-3CaO·P2O5固溶体的生成. 相似文献
8.
Al-Mg-Sc合金中组元活度及活度相互作用系数 总被引:4,自引:0,他引:4
以 Miedema二元合金生成热模型及 Toop方程为基础 ,利用元素的基本性质 ,计算了 1 0 73K下 Al-Mg- Sc三元合金溶液中组元的活度及组元间活度相互作用系数。结果表明 ,lnγ0Mg=- 0 .0 0 54;εMg Mg=0 .0 0 2 2 ;εSc Mg=εMg Sc=0 .0 2 8;ρMg Mg=- 0 .0 0 1 3;ρSc Mg=0 .0 1 5;ρMg Sc Mg =- 0 .0 75。 相似文献
9.
10.
2CaO·SiO_2-3CaO·P_2O_5含磷固溶体的生成可提高转炉液相渣的脱磷能力,减少渣量.但目前CaO-SiO_2-FeO-P_2O_5-Al_2O_3渣系中各组元活度的变化规律尚不明确,无法为分析含磷固溶体的形成机理提供理论依据.为此,本文依据分子离子共存理论建立了熔渣组元的活度模型,分析了不同条件下组元活度的变化规律.结果表明:随渣中Al_2O_3含量的增加,2CaO·SiO_2、3CaO·P_2O_5、3FeO·P_2O_5的活度逐渐降低;随着碱度的增大,3CaO·P_2O_5的活度升高,2CaO·SiO_2、3FeO·P_2O_5的活度则呈先升高后降低的趋势;随着渣中FeO含量的增加,2CaO·SiO_2、3FeO·P_2O_5及CaO·Al_2O_3的活度逐渐增大,并在w(FeO)为15%时达到最大值,之后逐渐降低;升高温度会导致CaO、3CaO·SiO_2的活度增大,2CaO·SiO_2的活度降低. 相似文献
11.
四元渣系CaO-FeO-SiO2-V2O3的活度模型及应用 总被引:1,自引:0,他引:1
根据分子离子共存理论建立了CaO-FeO-SiO2-V2O3四元渣系活度计算模型.计算结果表明,渣中V2O3的活度系数与实测值吻合.V2O3活度系数的影响因素主要为炉渣碱度和渣中氧化铁含量.冶炼含钒合金钢时,钒的收得率主要与冶炼钢种成分、炉渣成分和渣量有关,其中炉渣氧化铁的活度和渣量对钒的收得率影响显著.对于钒铁、V2O5和钒渣等合金添加剂用于冶炼含钒合金钢的计算表明,钒铁收得率最高,而钒渣的收得率最差,且只能用于冶炼微钒合金钢种. 相似文献
12.
本文以离子理论为基础,提出了一种计算碱性炼钢渣系中组元CaO活度的结构模型,并提出了多元渣系中组元CaO总交互作用和自相互作用的概念,利用已有的实验数据求出了CaO的总交互作用系数和自相互作用系数。最后使用不同渣系中CaO的实测活度数据对该模型进行了验证。结果表明该模型完全适用于碱性炼钢渣系。 相似文献
13.
有色合金中组元活度相互作用系数的模型计算 总被引:1,自引:0,他引:1
在Miedema二元合金生成热模型基础上,采用规则溶液一级近似理论、自由体积理论以及Toop几何模型,建立了三元系中组元活度相互作用系数的计算模型。计算结果与实验值对比效果良好。 相似文献
14.
前篇论文中曾用离子场强度的差值(△IFC)和离子性数量(m_i)两个参数建立了化学键模型.它比较成功地概括和预测MO-SiO_2系与M_2O-SiO_2系(M_2、M分别表示一价及二价金属元素)的许多热力学性质. 相似文献
15.
16.
本文介绍了E. Bonnier,R.Caboz提出的借助于相邻二元系的活度数据,计算三元系各组元活度的近似方法。并用这种方法计算了850℃下,三元系CeCl_3-KCl-NaCl的等全克分子过剩自由能变量曲线。由此可根据一般的方法分别计算三元系中各组份的活度。 相似文献
17.
《有色金属材料与工程》2017,(4)
利用最新版本的Pandat热力学计算软件,采用最新的Ti合金数据库和合理的热力学模型,计算出了Al-V系二元相图.研究发现:从相率和相图的特殊点对其进行了详细的热力学评估,最大误差为1.14%,说明计算相图与试验相图吻合较好;在Al-V二元相图的基础上,提取了Al和V在不同物质的成分和温度下的活度;拟合了恒温下其活度的计算公式,其线性相关度R趋近于1;作出了V的活度-成分-温度关系曲线,有效地解决了试验测活度难的问题. 相似文献
18.
本文综述了有色金属合金体系组元活度的研究进展,介绍了两种获取合金组元活度的方法,包括模型预测及实验测定。另外介绍了目前广泛应用于合金组元活度预测的热力学模型,以及各模型的特点及应用范围,并对这些模型进行了简要评述。综述了合金体系组元活度实验测定研究进展,可为合金组元活度等热力学性质研究提供理论参考。 相似文献
19.
20.
采用GA-BP神经网络模型对熔渣组元活度进行预测,通过对不同温度条件下不同组元渣系活度值的验证,证明了GA-BP渣系活度预测模型有较好的预测精度。在此基础上建立了奥氏体不锈钢、铁素体不锈钢冶炼过程中钢液脱氧热力学模型。热力学模型表明,钢液中铬质量分数越高,脱氧越困难;奥氏体不锈钢铝脱氧条件下,镍质量分数越高,脱氧能力越差;任何情况下降低熔渣中脱氧产物的活度都有利于降低平衡条件下钢液中溶解氧质量分数。 相似文献