首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A Distributed Medium Access Control (D-MAC) protocol based on UWB for high-rate Wireless Personal Area Networks is specified by the WiMedia Alliance. D-MAC protocol is suitable for ubiquitous connection in home networks, military/medical applications due to its inexpensive cost, low power consumption, high data rate, and distributed approach. In contrast to IEEE 802.15.3, D-MAC makes all devices have the same functionality. And its networks are self-organized and provide devices with functions such as access to the medium, channel allocation to devices, data transmission, quality of service and synchronization in a distributed manner. D-MAC fundamentally removes the problems of the centralized MAC approach revealed at IEEE 802.15.3 MAC by adopting a distributed architecture. However, the current D-MAC can’t prevent QoS degradations, occurred by mobile nodes with low data rate due to bad channel status, which cause critical problems in QoS provisioning to isochronous streams and mobile applications. Therefore, we propose a distributed cooperative MAC protocol for multi-hop WiMedia networks using virtual MIMO links. Based on instantaneous Channel State Information among WiMedia devices, our proposed protocol can intelligently select the transmission path with higher data rate to provide advanced QoS with minimum delay for real-time multimedia streaming services.  相似文献   

2.
In this paper, we present a framework for providing fair service and supporting quality of service (QoS) requirements in IEEE 802.11 networks with multiple access points (APs). These issues becomes critical as IEEE 802.11 wireless LAN are widely deployed in nationwide networks, linking tens of thousands of "hot-spots" for providing both real-time (voice) and non real-time (data) services to a large population of mobile users. However, both fairness and QoS guarantees cannot be supported in the current 802.11 standard. Our system, termed MiFi, relies on centralized coordination of the APs. During any given time of the "contention-free" period only a set of non-interfering APs is activated while the others are silenced. Moreover, the amount of service granted to an AP is proportional to its load and the system's performance is optimized by employing efficient scheduling algorithms. We show that such a system can be implemented without requiring any modification of the underlying MAC protocol standard or the behavior of the mobile stations. Our scheme is complementary to the emerging 802.11e standard for QoS and guarantees to overcome the hidden node and the overlapping cell problems. Our simulations establish that the system supports fairness and hence can provide QoS guarantees for real-time traffic, while maintaining a relative high throughput.  相似文献   

3.
WLAN中基于效用的呼叫接纳控制策略   总被引:3,自引:1,他引:2       下载免费PDF全文
陈明欣  刘干  朱光喜 《电子学报》2008,36(7):1429-1434
 为了在802.11的网络中提供服务质量(QoS)支持,IEEE 802.11 Task Group E提出了EDCF协议.然而EDCF只能提供业务区分服务,并不能提供服务质量(QoS)保证.为了能在重负载下提供QoS保证,在WLAN中加入呼叫接纳控制(CAC)机制是非常必要的.本文首先提出了一个新的3维Markov模型对非饱和状态下EDCF的吞吐量和平均接入时延进行了分析.并在此基础上,提出了一种基于效用函数的CAC策略,它可以使网络的总收益达到最大.最后通过大量仿真验证了所提出的CAC策略的有效性.  相似文献   

4.

To attain high quality of service (QoS) with efficient power consumption with minimum delay through Wireless Local Area Network (WLAN) through mesh network is an important research area. But the existing real-time routing system involves multiple hops with time varying mobility channels for fastest data propagation is greatly degraded with power utilization factor through congestion traffic queue. Required allocation and resource management through desired access points plays vital roles in which multiple hops demands delay rates by interconnected data nodes. In order to achieve high throughput with minimum delay the QoS in real-time data communication have to be concentrated by using Viterbi decoder with convolution codes. By undertaking IEEE 802.11 WLAN physical layers afford multiple transmission rates by engaging various modulations and channel coding schemes, major point arises to pinpoint the desired transmission rate to enhance the performance. Because each node exhibits different dynamic characteristics based on the token rings passed from the server to the end links. In order to validate the real-time traffic with power consumption and average delay communication, an improved Viterbi decoder is designed with convolution codes to determine accurate channel estimation based on learning the utilization ration of the needed to execute the current wireless channel optimization. The proposed methodology can attain accurate channel estimation without additional implementation effort and modifications to the current 802.11 standard. And each node is capable to choose the optimized transmission rate, so that the system performance can be improved with very minimum power with high packet transmission ratio with minimum traffic rate to improve QoS. The proposed scheme also offers an appealing combination of the allocation of transmission rate and the current link condition. Based on the basic relationship between them, the proposed decoding scheme maximizes the throughput with periodic learning of channel variation and system status.

  相似文献   

5.
Development of efficient medium access control (MAC) protocols providing both high throughput performance for data traffic and good quality of service (QoS) support for real-time traffic is the current major focus in distributed contention-based MAC protocol research. In this paper, we propose an efficient contention resolution algorithm for wireless local area networks, namely, the fast collision resolution (FCR) algorithm. The MAC protocol with this new algorithm attempts to provide significantly higher throughput performance for data services than the IEEE 802.11 MAC algorithm and more advanced dynamic tuning backoff (DTB) algorithm. We demonstrate that this algorithm indeed resolves collisions faster and reduces the idle slots more effectively. To provide good fairness performance and to support good QoS for real-time traffic, we incorporate the self-clocked fair queueing algorithm and a priority scheme into the FCR algorithm and come up with the real-time FCR (RT-FCR) algorithm, and show that RT-FCR can simultaneously achieve high throughput and good fairness performance for nonreal-time traffic while maintaining satisfactory QoS support for real-time traffic.  相似文献   

6.
The conventional medium access control (MAC) protocols assume that only one packet (frame) can be received at a given time. However, with the advent of spread spectrum, antenna arrays, and sophisticated signal processing techniques, it is now possible to achieve multiple-packet reception (MPR) in wireless networks. With MPR, the network capacity can be remarkably increased, but so far, how to achieve fair bandwidth allocation for the stations with different quality of service (QoS) requirements in such networks is still a problem. To solve this problem, we propose a distributed method that can support multiple priority classes in the MPR-capable wireless networks with weighted fair share. In particular, this method assigns each class a frame transmission probability to reflect its relative weight among the different data traffic flows. A closed-form expression of system throughput is derived for each class in the environment, and it is numerically evaluated with different simulation scenarios. The results show that the method can achieve the weighted fairness under different numbers of priority classes and different numbers of stations in the networks.  相似文献   

7.
As public deployment of wireless local area networks (WLANs) has increased and various applications with different service requirements have emerged, fairness and quality of service (QoS) are two imperative issues in allocating wireless channels. This study proposes a fair QoS agent (FQA) to simultaneously provide per-class QoS enhancement and per-station fair channel sharing in WLAN access networks. FQA implements two additional components above the 802.11 MAC: a dual service differentiator and a service level manager. The former is intended to improve QoS for different service classes by differentiating service with appropriate scheduling and queue management algorithms, while the latter is to assure fair channel sharing by estimating the fair share for each station and dynamically adjusting the service levels of packets. FQA assures (weighted) fairness among stations in terms of channel access time without decreasing channel utilization. Furthermore, it can provide quantitative service assurance in terms of queuing delay and packet loss rate. FQA neither resorts to any complex fair scheduling algorithm nor requires maintaining per-station queues. Since the FQA algorithm is an add-on scheme above the 802.11 MAC, it does not require any modification of the standard MAC protocol. Extensive ns-2 simulations confirm the effectiveness of the FQA algorithm with respect to the per class QoS enhancement and per-station fair channel sharing  相似文献   

8.
Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness   总被引:1,自引:0,他引:1  
This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner  相似文献   

9.
In this paper, a multi-hop range conflict-free resource reservation scheme for UWB (Ultra Wide Band) WPAN (Wireless Personal Area Network) with D-MAC (Distributed Medium Access Control) is proposed. Unlike the centralized IEEE 802.15.3 MAC, the D-MAC UWB specified by WiMedia Alliance supports DRP (Distributed Reservation Protocol) mechanism which makes all devices be self-organized and removes the SOP (Simultaneous Operating Piconet) problem, i.e., packet collisions between overlapped piconets in the centralized IEEE 802.15.3 MAC. However, since each device’s mobility perspective in multi-hop environment has not been taken into account in the current WiMedia D-MAC, it may cause a “mobile” hidden node problem. In addition, once a DRP conflict occurs due to the mobile hidden node problem, only one of the DRP reservations involved in that DRP conflict maintains the reserved MASs, while the other DRP reservations must be terminated and DRP negotiations for them have to be re-started although only a few MASs are overlapped. Such DRP termination and renegotiation time delays due to the DRP conflicts can be a critical problem to the mobile devices transceiving real-time QoS traffic streams. Therefore, we propose a mechanism to prevent and resolve multi-hop range DRP conflicts due to each device’s mobility in D-MAC environment and demonstrate its guaranteed Seamless QoS and prioritized real-time QoS performances via numerical analyses.  相似文献   

10.
Dynamic Bandwidth Management in Single-Hop Ad Hoc Wireless Networks   总被引:1,自引:0,他引:1  
Distributed weighted fair scheduling schemes for Quality of Service (QoS) support in wireless local area networks have not yet become standard. Therefore, we propose an Admission Control and Dynamic Bandwidth Management scheme that provides fairness and a soft rate guarantee in the absence of distributed MAC-layer weighted fair scheduling. This scheme is especially suitable for smart-rooms where peer-to-peer multimedia transmissions need to adapt their transmission rates co-operatively. We present a mapping scheme to translate the bandwidth requirements of an application into its channel time requirements. The center piece of our scheme is a Bandwidth Manager, which allots each flow a share of the channel, depending on the flow's requirements relative to the requirements of other flows in the network. Admitted flows control their transmission rates so they only occupy the channel for the fraction of time allotted to them. Thus co-operation between flows is achieved and the channel time is fair shared. As the available channel capacity changes and the traffic characteristics of various flows change, the Bandwidth Manager dynamically re-allocates the channel access time to the individual flows. Our simulation experiments show that, at a very low cost and with high probability, every admitted flow in the network will receive at least its minimum requested share of the network bandwidth. We also present extensive testbed experiments with our scheme using a real-time audio streaming application running between Linux laptops equipped with standard IEEE 802.11 network cards.  相似文献   

11.
One of the challenges that must be overcome to realize the practical benefits of ad hoc networks is quality of service (QoS). However, the IEEE 802.11 standard, which undeniably is the most widespread wireless technology of choice for WLANs and ad hoc networks, does not address this issue. In order to support applications with QoS requirements, the upcoming IEEE 802.11e standard enhances the original IEEE 802.11 MAC protocol by introducing a new coordination function which has both contention-based and contention-free medium access methods. In this paper, we consider the contention-based medium access method, the EDCA, and propose an extension to it such that it can be used to provide QoS guarantees in WLANs operating in ad hoc mode. Our solution is fully distributed, uses admission control to regulate the usage of resources and gives stations with high-priority traffic streams an opportunity to reserve time for collision-free access to the medium.  相似文献   

12.
The major issue related to the realization of wireless multimedia system is the design of suitable medium access control (MAC) protocol. The design challenge is to maximize the utilization of the limited wireless resources while guaranteeing the various quality of service requirements for all traffic classes especially for the stringent real-time constraint of real time variable bit rate (rt-VBR) video service. In this paper a novel resource allocation algorithm for video traffic is proposed. The proposed allocation algorithm aims to provide fair delay for video packets by minimizing the delay difference among transmitted video packets. At the same time it adaptively controls the allocated resources (bandwidth) for video traffic around the corresponding average bit rate, and has the ability of controlling the quality of service (QoS) offered for video traffic in terms of packet loss probability and average delay. A minimized control overhead of only two bits is needed to increase the utilization efficiency. Simulation results show that the proposed algorithm achieves very high utilization and provides nearly fair delay among video packets. Its efficiency is also investigated under traffic integration condition with voice and data traffic to show that the QoS offered to video traffic does not change in the presence of the highest priority voice traffic while data traffic increases the channel utilization to 98% by using the remaining bandwidth after voice and video traffic while a good QoS is offered to voice and data traffic.
Mohammed Abd-Elnaby (Corresponding author)Email:
  相似文献   

13.
This paper presents a class of distributed power control algorithms for wireless networks which provides quality of service (QoS) fulfillment by exploiting the channel variability opportunistically. It is suitable for traffic sources requiring either a minimum or a prescribed QoS provision, and at the same time provides a fair resource allocation. Practical system constraints such as limitations on transmission power and modulation and coding schemes are considered in this framework. Moreover, it is analytically shown to be more energy efficient than the opportunistic power control. Two algorithms of this class are described and have their performance confronted with opportunistic algorithms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A WiMAX technology is a very promising Broadband Wireless Access technology that is able to transmit different service types. This latter can have different constraints such as traffic rate, maximum latency, and tolerated jitter. The IEEE 802.16 Medium Access Control specifies five types of QoS classes: UGS, rtPS, ertPS, nrtPS, and BE. However, the IEEE 802.16 standard does not specify the scheduling algorithm to be used. Operators have the choice among many existing scheduling techniques. Also, they can propose their own scheduling algorithms. In this paper, we propose a scheduling strategy (Adaptive Weighted Round Robin, AWRR) for various Internet Protocol Television (IPTV) services traffic over 802.16j networks. Our scheme adapts dynamically the scheduler operation to according queue load and quality of service constraints. In particular, the proposed mechanism gives more priority to high definition television and standard definition television traffic by using two schedulers. The proposed scheduling algorithm has been simulated using the QualNet network simulator. The experimental results show that our scheduler schemes AWRR have a better performance than the traditional scheduling techniques for rtPS traffic, which allows ensuring QoS requirements for IPTV application. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Widespread deployment of wireless local area networks and a gradual increase in streaming applications have brought about a demand for improved quality of service (QoS) in wireless networks. However, increasing user datagram protocol based high priority multimedia traffic and the class differentiation introduced in QoS protocols, has resulted into transmission control protocol (TCP) starvation and increased spurious timeouts. While today’s Internet traffic is still dominated by TCP based applications, the negative effects of IEEE 802.11e enhanced distributed coordination function (EDCF) scheme on TCP performance in the presence of high priority traffic have not been extensively explored. In this paper, the performance of TCP in 802.11e WLAN competing with high priority traffic is examined. The prioritised adaptive enhanced scheme (PAD_EDCF) is proposed. The proposed scheme gives priority to TCP control packets in order to improve the low traffic transmission flow and acquires additional capability of adjusting the MAC parameters based on the traffic load condition. Simulation results demonstrate that the proposed scheme significantly improves TCP performances in terms of traffic efficiency, throughput and reduces delay.  相似文献   

16.
Performance Evaluation of the IEEE 802.16 MAC for QoS Support   总被引:2,自引:0,他引:2  
The IEEE 802.16 is a standard for broadband wireless communication in metropolitan area networks (MAN). To meet the QoS requirements of multimedia applications, the IEEE 802.16 standard provides four different scheduling services: unsolicited grant service (UGS), real-time polling service (rtPS), non-real-time polling service (nrtPS), and Best Effort (BE). The paper is aimed at verifying, via simulation, the effectiveness of rtPS, nrtPS, and BE (but UGS) in managing traffic generated by data and multimedia sources. Performance is assessed for an IEEE 802.16 wireless system working in point-to-multipoint (PMP) mode, with frequency division duplex (FDD), and with full-duplex subscriber stations (SSs). Our results show that the performance of the system, in terms of throughput and delay, depends on several factors. These include the frame duration, the mechanisms for requesting uplink bandwidth, and the offered load partitioning, i.e., the way traffic is distributed among SSs, connections within each SS, and traffic sources within each connection. The results also highlight that the rtPS scheduling service is a very robust scheduling service for meeting the delay requirements of multimedia applications  相似文献   

17.
Wireless Internet Service Providers (WISPs) are expected to be the new generation of access providers using the emerging IEEE 802.11 technology. Face to the high competition of providing network services, the WISP have to offer the best service to the users. For this purpose, the WISP networks' managers need to provide Quality of Service (QoS) with a minimum cost in their wireless networks. The current link layer IEEE 802.11b provides fair sharing of the radio resource with no service differentiation mechanism; similarly to the Internet best effort service. However, the ongoing standard IEEE 802.11e should implement a priority mechanism at the link layer to differentiate the users' traffic. In order to overcome the lack of differentiated mechanism in the current link layer IEEE 802.11b, hence controlling the utilization of the scarce radio resource, we propose in this article to deploy Diffserv architecture coupled with an adaptive provisioning of QoS to provide better services to the users with minimum WISP cost and improve the utilization of the radio resource. Compliant with the current and future IEEE 802.11 link layer, the proposed adaptive QoS provisioning mechanism reacts to the radio resource fluctuation and improves the number of accepted clients in the IEEE 802.11 wireless cells based on the WISP business policies. The network layer differentiation provided by the Diffserv architecture intends to control the concurrent access of the traffic to the scarce radio resources at the IP layer of the mobile hosts for the uplink traffic on one hand, and at the IP layer of the base stations for the downlink traffic on the other hand.  相似文献   

18.
In IEEE 802.11 based WLAN standard, distributed coordination function is the fundamental medium access control (MAC) technique. It employs a CSMA/CA with random binary exponential backoff algorithm and provides contention-based distributed channel access for stations to share the wireless medium. However, performance of this mechanism drops dramatically due to random structure of the backoff process, high collision probability and frame errors. That is why development of an efficient MAC protocol, providing both high throughput for data traffic and quality of service (QoS) support for real-time applications, has become a major focus in WLAN research. In this paper, we propose an adaptive beacon-based collision-free MAC adaptation. The proposed scheme makes use of beacon frames sent periodically by access point, lets stations enter the collision-free state and reduces the number of idle slots regardless of the number of stations and their traffic load (saturated or unsaturated) on the medium. Simulation results indicate that the proposed scheme dramatically enhances the overall throughput and supports QoS by reducing the delay, delay variation and dropping probability of frames.  相似文献   

19.
On the basis of inner-system labeling signaling used in the integrated access system, a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in the integrated-services is analyzed. The base of this algorithm is Class of Services (COS), and each packet entering the relative independent area (an autonomous system) would be labeled according to the service type or Quality of Service (QoS) in demand, and be scheduled and managed within the system (the system can be enlarged if conforming to the same protocol). The experimental results show that each of the stream rate in the integrated-services would converge to a stable value if the rates of transmitting converge to that of the receiving exponentially, that is, the effective traffic of each stream would be fair.  相似文献   

20.
The IEEE 802.16 standard provides a high degree of flexibility for setting up and operating wireless broadband networks in metropolitan environments. The standard supports numerous capabilities, including mesh topologies and multimedia communications. In this paper, we study these two features by investigating how efficiently an IEEE 802.16 mesh network can treat distributed multimedia traffic by providing differentiated quality of service (QoS). A key component of the system is the ldquoenhanced frame registry tree schedulerrdquo (E-FRTS) that provides QoS-aware resource allocation using a tree structure to prepare the creation of time frames and reduce processing requirements at the beginning of each frame. Simulation results show that distributed multimedia traffic can be efficiently supported in mesh 802.16 networks, provided efficient scheduling and a reasonable number of hops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号