首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The embodiment of physical compliance in humanoid robots, inspired by biology, improves the robustness of locomotion in unknown environments. The mechanical implementation using elastic materials demands a further combination together with controlled compliance to make the intrinsic compliance more effective. We hereby present an active compliance control to stabilize the humanoid robots for standing and walking tasks. Our actively controlled compliance is achieved via admittance control using closed-loop feedback of the six axis force/torque sensors in the feet. The modeling and theoretical formulation are presented, followed by the simulation study. Further, the control algorithms were validated on a real humanoid robot COMAN with inherent compliance. A series of experimental comparisons were studied, including standing balancing against impacts, straight walking, and omni-directional walking, to demonstrate the necessity and the effectiveness of applying controlled compliance on the basis of physical elasticity to enhance compliant foot-ground interaction for the successful locomotion. All data from simulations and experiments related with the proposed controller and the performance are presented, analyzed, and discussed.  相似文献   

2.
ABSTRACT

Currently, a large number of industrial robots have been deployed to replace or assist humans to perform various repetitive and dangerous manufacturing tasks. However, based on current technological capabilities, such robotics field is rapidly evolving so that humans are not only sharing the same workspace with robots, but also are using robots as useful assistants. Consequently, due to this new type of emerging robotic systems, industrial collaborative robots or cobots, human and robot co-workers have been able to work side-by-side as collaborators to accomplish tasks in industrial environments. Therefore, new human–robot interaction systems have been developed for such systems to be able to utilize the capabilities of both humans and robots. Accordingly, this article presents a literature review of major recent works on human–robot interactions in industrial collaborative robots, conducted during the last decade (between 2008 and 2017). Additionally, the article proposes a tentative classification of the content of these works into several categories and sub-categories. Finally, this paper addresses some challenges of industrial collaborative robotics and explores future research issues.  相似文献   

3.
This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement.We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology.The learning objectives of both course and project are introduced and compared with the students’ background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors’ purpose, including the students’ personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels.  相似文献   

4.
The social issues of worker displacement and worker retraining due to introduction of robotics are discussed and the impact of industrial robots on organization design and job design are reviewed and safety issues mentioned. The impact of human industrial work performance on designing robotics systems is reviewed with special reference to the range of human performance abilities; human information-processing, memory and decision making capabilities; paced-work; supervisory control of robotics systems; and, social and management impacts of robot diffusion.  相似文献   

5.
Robust climbing in unstructured environments has been one of the long-standing challenges in robotics research. Among others, the control of large adhesion forces is still an important problem that significantly restricts the locomotion performance of climbing robots. The main contribution of this paper is to propose a novel approach to autonomous robot climbing which makes use of hot melt adhesion (HMA). The HMA material is known as an economical solution to achieve large adhesion forces, which can be varied by controlling the material temperature. For locomotion on both inclined and vertical walls, this paper investigates the basic characteristics of HMA material, and proposes a design and control of a climbing robot that uses the HMA material for attaching and detaching its body to the environment. The robot is equipped with servomotors and thermal control units to actively vary the temperature of the material, and the coordination of these components enables the robot to walk against the gravitational forces even with a relatively large body weight. A real-world platform is used to demonstrate locomotion on a vertical wall, and the experimental result shows the feasibility and overall performances of this approach.  相似文献   

6.
7.
As a result of new technology becoming available it is increasingly possible to develop more natural human‐robot interfaces. In particular, interaction channels based on both voice and synthesis recognition, and combined with other sensors, mainly computer vision, are now implemented in current robots. These capabilities enable a more natural face‐to‐face dialogue in the human‐robot interaction. Currently, they are demonstrating their potential in many service robot applications, such as museums, hospitals, and so on. One area where these new forms of interaction have been extensively tested recently is within the educational robotics context. This article addresses a novel user‐interface implemented in such a system developed in our lab, namely “The UJI Robotics Telelab”, where the word UJI is the acronym for the name of our University. In order to develop this kind of complex system, several years of intensive research have been necessary in both multimedia tutoring systems and robotics. The principal motive for the project was the experimentation and validation of a complete telelaboratory, including an Internet‐based robot system, with off‐line and on‐line control possibilities, and other different facilities (e.g., multimedia tutorial, chat channel, etc.) aimed at teaching undergraduate students in the robotics subject in our university campus. Finally, taking into account experience gained from using this system for regular undergraduate courses in robotics, new facilities have been implemented, and results showing the user performance, usability, and reliability of this novel contribution are discussed, including its advantages and limitations. © 2005 Wiley Periodicals, Inc.  相似文献   

8.
文章针对Hero-1移动机器人系统的局限,面向开放式结构对其进行了升级改进。实现了机器人与PC机之间的可靠无线通信,以及机器人在电路编程功能,同时为机器人扩展了外围接口和定时计数器以便于新功能的增加。通过改造,全面提升了系统的性能,为进一步的机器人研究提供了一个良好的试验平台。  相似文献   

9.
The importance of system integration is widely recognized in robotics. This motivates the application of Model-Based Systems Engineering (MBSE) approaches to improve the development process of robot systems. This paper models a development process to achieve given task goals using a human-like upper body robot based on MBSE approach. For this purpose, we focus on the domain knowledge of tasks and skills in robotics. Since MBSE is a general methodology, there is a lot of flexibility on the way of proceeding with the analysis and design, and how to utilize models there. Using the concept of tasks and skills is helpful for better uderstanding of the development process. Our process is based on three main concepts: (1) stakeholders of User and Developer, (2) coordination between User and Developer using skills as communication interface, (3) extension development. Making the process explicit helps many stakeholders such as robot makers, system integrators, and engineers in various application domains to join the system development. It is also effective for accumulating experiences and work products of the development. In addition, we can expect that better understanding of the engineering process results in the improvement of the process performed by automation tools and humans cooperatively.  相似文献   

10.
This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD drawing, how to automatically extract such motion data from the drawing, make the mapping of data from the virtual (CAD model) to the real environment and the process of automatic generation of robot paths/programs. In summary, this study aims to present a novel CAD-based robot programming system accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation tasks show the effectiveness and versatility of the proposed approach.  相似文献   

11.
This paper describes a heterogeneous modular robot system design which attempts to give a quick solution to a diversity of tasks. The approach is based on the use of an inventory of three types of modules i.e., power and control module, joint module and specialized module. Each module type aims to balance versatility and functionality. Their design permits rapid and cost effective design and fabrication. They are interchangeable in different ways to form different robot or system configurations. Depending on the task, the operator decides what type of robot can provide the best performance within the mission. A spherical joint module is described and used to build different robots, hence, forward and inverse kinematics models are obtained. Finally, from the modules described in this work, several robot configurations such as robotic arms, leg-based robots and wheel-based robots are assembled to demonstrate the execution of manipulation and locomotion tasks.  相似文献   

12.
Chen JY  Terrence PI 《Ergonomics》2008,51(8):1137-1152
This study examined the concurrent performance of military gunnery, robotics control and communication tasks in a simulated environment. More specifically, the study investigated how aided target recognition (AiTR) capabilities (delivered either through tactile or tactile + visual cueing) for the gunnery task might benefit overall performance. Results showed that AiTR benefited not only the gunnery task, but also the concurrent robotics and communication tasks. The participants' spatial ability was found to be a good indicator of their gunnery and robotics task performance. However, when AiTR was available to assist their gunnery task, those participants of lower spatial ability were able to perform their robotics tasks as well as those of higher spatial ability. Finally, participants' workload assessment was significantly higher when they teleoperated (i.e. remotely operated) a robot and when their gunnery task was unassisted. These results will further understanding of multitasking performance in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.  相似文献   

13.
Human–Robot Collaboration (HRC) is a term used to describe tasks in which robots and humans work together to achieve a goal. Unlike traditional industrial robots, collaborative robots need to be adaptive; able to alter their approach to better suit the situation and the needs of the human partner. As traditional programming techniques can struggle with the complexity required, an emerging approach is to learn a skill by observing human demonstration and imitating the motions; commonly known as Learning from Demonstration (LfD). In this work, we present a LfD methodology that combines an ensemble machine learning algorithm (i.e. Random Forest (RF)) with stochastic regression, using haptic information captured from human demonstration. The capabilities of the proposed method are evaluated using two collaborative tasks; co-manipulation of an object (where the human provides the guidance but the robot handles the objects weight) and collaborative assembly of simple interlocking parts. The proposed method is shown to be capable of imitation learning; interpreting human actions and producing equivalent robot motion across a diverse range of initial and final conditions. After verifying that ensemble machine learning can be utilised for real robotics problems, we propose a further extension utilising Weighted Random Forest (WRF) that attaches weights to each tree based on its performance. It is then shown that the WRF approach outperforms RF in HRC tasks.  相似文献   

14.
《Ergonomics》2012,55(8):1137-1152
This study examined the concurrent performance of military gunnery, robotics control and communication tasks in a simulated environment. More specifically, the study investigated how aided target recognition (AiTR) capabilities (delivered either through tactile or tactile + visual cueing) for the gunnery task might benefit overall performance. Results showed that AiTR benefited not only the gunnery task, but also the concurrent robotics and communication tasks. The participants' spatial ability was found to be a good indicator of their gunnery and robotics task performance. However, when AiTR was available to assist their gunnery task, those participants of lower spatial ability were able to perform their robotics tasks as well as those of higher spatial ability. Finally, participants' workload assessment was significantly higher when they teleoperated (i.e. remotely operated) a robot and when their gunnery task was unassisted. These results will further understanding of multitasking performance in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.  相似文献   

15.
Our aim was to consider interaction control problems from different viewpoints, primarily taking into account practical problems and needs. Basic strategies for controlling the interaction of a robot with the environment are the subject of the paper. The paper also provides a historical perspective on interaction control, summarizing the major achievements in this area for the last 25 years. After this long period of investigation we are now faced with an inevitable change of generation in this field. Many young enthusiastic researchers are focusing now on various attractive issues in human-robot-environment interaction control, especially from the viewpoint of novel disciplines such as artificial intelligence, mechatronics, augmented reality, etc. Considering more complex tasks, the application of force sensors and interaction control techniques is certainly not sufficient to provide the robot with a required degree of autonomy and intelligence. The paper attempts to provide unified theoretical force and position control paradigms considering basic control issues: stability, performance, and robustness. This framework assumes a general dynamic environment and uses an inverse dynamic control strategy to design various controllers for specific force and position stabilization tasks. Stability problems during the dynamic control tasks are also considered in the paper using different stability criteria. The established contact stability theory has been expanded to the control and synthesis. Therefore, one of the basic characteristics of regular bipedal walk of humanoid robots is the maintenance of their dynamic balance during the walk, whereby a decisive role is played by the unpowered degrees of freedom arising at the foot-ground contact. Hence, the role of Zero-Moment Point (ZMP) as an indicator of dynamic balance is indispensable. On the other hand, we are witnesses of the diverse realizations of locomotion systems, from those with human-like feet, aiming to mimic in full the human gait, passive walkers, which practically roll on specially profiled feet, to the footless locomotion systems. It is quite clear that any of these systems can realize a gait (very often such gait is not dynamically balanced), but our present study shows that the performances of such walking systems are essentially different and inapt to meet the requirements that are stated for the humanoids in a human environment. This study points out the indispensability of the regular, fully dynamically balanced gait for the simultaneous realization of locomotion-manipulation activities, as well as for the walk in an unstructured environment.  相似文献   

16.
This work presents a walking pattern generator based on the control of the center of mass (COM) states and its experimental validations on the compliant humanoid robot COMAN powered by intrinsically compliant joints. To cope with the inaccuracies of the joint position tracking resulted by the physical compliance, the proposed pattern generator uses the feedback states of the COM and on-line computes the updated COM references. The position and velocity of the COM are the state variables, and the constrained ground reaction force (GRF) limited by the support polygon is the control effort to drive the real COM states to track the desired references. The frequency analysis of the COM demonstrates its low frequency spectrum that indicates the demand of a low control bandwidth which is suitable for a robot system with compliant joints. The effectiveness of the proposed gait generation method was demonstrated by the experiments performed on the COMAN robot. The experimental data such as the COM position and velocity tracking, the GRF applied on feet, the measured step length and the walking velocity are analyzed. The effect of the passive compliance is also discussed.  相似文献   

17.
Humanoid robots introduce instabilities during biped march that complicate the process of estimating their position and orientation along time. Tracking humanoid robots may be useful not only in typical applications such as navigation, but in tasks that require benchmarking the multiple processes that involve registering measures about the performance of the humanoid during walking. Small robots represent an additional challenge due to their size and mechanic limitations which may generate unstable swinging while walking. This paper presents a strategy for the active localization of a humanoid robot in environments that are monitored by external devices. The problem is faced using a particle filter method over depth images captured by an RGB-D sensor in order to effectively track the position and orientation of the robot during its march. The tracking stage is coupled with a locomotion system controlling the stepping of the robot toward a given oriented target. We present an integral communication framework between the tracking and the locomotion control of the robot based on the robot operating system, which is capable of achieving real-time locomotion tasks using a NAO humanoid robot.  相似文献   

18.
仿人机器人是机器人研究领域的热点,可以应用于工业、医疗和家庭服务等领域。机器人仿真技术可以帮助研究者更好地研究机器人的结构和运动控制。本文基于Webots软件,构建HOAP2机器人的运动仿真平台,详细说明了机器人仿真环境的构建过程以及运动控制的仿真过程。仿真结果说明,本研究构建的仿真平台是有效的。  相似文献   

19.
医疗机器人是一门集医学、仿生学、机械力学、材料学、计算机科学、运筹学、机器人学等学科于一体的新兴交叉学科。随着传感器技术、通信设备,尤其是云计算的发展,云医疗机器人应运而生。一个云医疗机器人只需要少量的硬件和软件配置,它所需的大部分资源和计算过程由连接的云端提供。云医疗机器人从计算或者资源配置密集型转化为效率和功能密集型,从而可以更高效地完成复杂任务。本文设计一种云医疗机器人系统平台,该平台由医疗云平台层和远程云机器人层组成。以系统平台为基础,利用无线网络技术设计2个云医疗机器人系统案例,并进行仿真。仿真结果表明,云医疗机器人系统具有效率高、成本低和应用性强等特点。  相似文献   

20.

Soft robotics is a trending area of research that can revolutionize the use of robotics in industry 4.0 and cyber-physical systems including intelligent industrial systems and their interactions with the human. These robots have notable adaptability to objects and can facilitate many tasks in everyday life. One potential use of these robots is in medical applications. Due to the soft body of these robots, they are a suitable replacement for applications like rehabilitation and exoskeletons. In this paper, we present the neuro-fuzzy modeling of a soft pneumatic finger-like actuator. This actuator is a fiber-reinforced soft robot with the shape and dimensions of a real finger and moves in planar motion. A bending sensor is used as a feedback for curvature motion of this actuator. In order to model this actuator, an adaptive neuro-fuzzy inference system is utilized to overcome the hardship in the modeling of the nonlinear performance of the soft materials. An experimental setup is designed to obtain suitable input–output data needed for modeling. The results show the applicability of the utilized method in the modeling of the soft actuator.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号