首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为了揭示硅片自旋转磨削加工表面层损伤机理,采用透射电子显微镜对硅片磨削表面层损伤特性进行了分析.结果表明:粗磨Si片的损伤层中有大量微裂纹和高密度位错;半精磨和精磨si片的损伤层中除了微裂纹和位错外,还存在非晶硅和多晶硅(Si-I相和Si-III相).从粗磨到半精磨,Si片的非晶层厚度从约Onm增大到约110nm;从半精磨剑精磨,Si片的非品层厚度由约110nm减小至约30nm,且非晶层厚度的分布均匀性提高.从粗磨到精磨,Si片损伤深度、微裂纹深度及位错滑移深度逐渐减小,材料的去除方式由脆性断裂方式逐渐向塑性方式过渡.  相似文献   

2.
为了揭示硅片自旋转磨削加工表面层损伤机理,采用透射电子显微镜对硅片磨削表面层损伤特性进行了分析.结果表明:粗磨Si片的损伤层中有大量微裂纹和高密度位错;半精磨和精磨si片的损伤层中除了微裂纹和位错外,还存在非晶硅和多晶硅(Si-I相和Si-III相).从粗磨到半精磨,Si片的非晶层厚度从约Onm增大到约110nm;从半精磨剑精磨,Si片的非品层厚度由约110nm减小至约30nm,且非晶层厚度的分布均匀性提高.从粗磨到精磨,Si片损伤深度、微裂纹深度及位错滑移深度逐渐减小,材料的去除方式由脆性断裂方式逐渐向塑性方式过渡.  相似文献   

3.
在直径300 mm Si片制备中,利用双面磨削技术能为后续加工提供高精度的表面,但Si片损伤层厚度较大.通过扫描电子显微镜和透射电子显微镜对Si片表面及截面进行观察,得到了经不同粒径的砂轮磨削后的Si片的表面及截面形貌、Si片的表面及亚表面损伤层的厚度并进行了分析比较.结果表明,用粒度更小的3000#砂轮磨削,能够有效地降低Si片表面及亚表面损伤层的厚度,为优化300 mm单晶Si片双面磨削工艺、提高Si片表面磨削质量提供了清晰、量化的实验理论依据.  相似文献   

4.
硅片背面减薄技术研究   总被引:1,自引:1,他引:0  
江海波  熊玲  朱梦楠  邓刚  王小强 《半导体光电》2015,36(6):930-932,963
硅片背面磨削减薄工艺中,机械磨削使硅片背面产生损伤,导致表面粗糙,且发生翘曲变形.分别采用粗磨、精磨、精磨后抛光和精磨后湿法腐蚀等四种不同背面减薄方法对15.24cm(6英寸)硅片进行了背面减薄,采用扫描电子显微镜对减薄后的硅片表面和截面形貌进行了表征,用原子力显微镜测试了硅片表面的粗糙度,用翘曲度测试仪测试了硅片的翘曲度.结果表明,经过粗磨与精磨后的硅片存在机械损伤,表面粗糙且翘曲度大,粗糙度分别为0.15和0.016 μm,翘曲度分别为147和109 μm;经过抛光和湿法腐蚀后的样品无表面损伤,粗糙度均小于0.01 μm,硅片翘曲度低于60 μm.  相似文献   

5.
预非晶化硅中注入硼的异常扩散   总被引:4,自引:0,他引:4  
预非晶化硅中,在非晶区和损伤区之间有一重损伤层存在,其边缘清楚,厚度约为20nm,包含有大量的扩展缺陷。它阻挡了尾部损伤区内簇团分解放出的硅间隙原子向非晶区扩散,大大削弱了非晶区内注入硼的异常扩散。选用条件适当的二次硅离子注入,使重损伤层加重加厚,从而完全阻止了非晶层内硼的异常扩散。本文在实验上为重损伤层阻止非晶区内硼异常扩散的模型提供证明。  相似文献   

6.
芯片背面磨削减薄技术研究   总被引:1,自引:0,他引:1  
通过实验数据和实物照片列出了减薄工艺参数、检测结果;并结合实例研究了现代磨削减薄系统多采用的硅片自旋转磨削技术,探讨脆性材料进行延性域磨削的加工机理。  相似文献   

7.
硅片的表面损伤层,关系到切割后破片率及面的形状等。通过对硅片表面分析,发现硅片表面呈蜂窝状,有大孔、小孔和微孔。硅片侧面边缘呈山峰山沟状,并伴随有裂纹,从外向里分为表面镶嵌层和缺陷应力层。通过对硅片表面损伤的形成机理研究,发现通过以下调整可以减小表面损伤和提高表面质量:一是减小切割时的晶体所受到的垂直压力;二是调整碳化硅的直径分布系数,圆度系数,堆积密度。  相似文献   

8.
采用有机改性硅酸盐制备了光敏性溶胶-凝胶,并应用四丙氧基锆作为调节折射率的材料.为了增加薄膜与硅片的粘附作用,先用干氧热氧化法在硅片上生长一层厚度约为150nm的SiO2,然后使用提拉法在硅片上提拉成膜,薄膜厚度达到3.6μm.研究发现紫外曝光时间和坚膜时的后烘温度都会使薄膜的折射率增大.样品的原子力显微镜照片表明薄膜的表面非常平整,在5μm×5μm的范围内表面起伏只有0.657nm.利用波导阵列掩膜版,对制备的薄膜在紫外光波段下曝光,得到了表面平坦、侧墙光滑、陡直的沟道波导阵列.  相似文献   

9.
磨削工艺被广泛应用于大直径Si衬底的制备中,而由磨削带来的Si片表面损伤及形貌对后续加工有较大的影响.利用扫描电子显微镜、粗糙度仪、喇曼光谱仪等工具对经过2000#、3000#、8000#砂轮磨削的Si片表面损伤层厚度及表面形貌进行了一系列测试,通过对测试数据的分析,得到了不同粒径磨削砂轮的优缺点,在此基础上提出了将传统单步磨削工艺优化为2000#磨削+8000#磨削的两步加工工艺,该工艺既可以保证较高的Si片表面质量,又具有较高的生产效率.  相似文献   

10.
用于5G通信芯片支撑层的超薄硅双面抛光片的生产是一个需要攻克的难题。该产品的技术难点在于,硅片厚度低至100μm,薄如纸张,采用传统粘蜡抛光工艺,加工效率极低且碎片率极高,同时硅片几何参数无法保证,成品率较低。由于磨削工艺可有效减少硅片表面的损伤层、改善几何参数,所以针对超薄硅片的加工,采用贴膜抛光工艺可以保证抛光的效率和成品率。在硅片腐蚀后采用磨削+贴膜抛光的工艺,解决了超薄硅双抛片加工效率低、碎片率高、几何参数难以保证、成品率低的问题。  相似文献   

11.
65 nm及以下线宽对Si片表面的各方面性能要求越来越高,主要体现在两个方面,一个是加工工艺,另一个是加工设备.在加工方法上,65 nm线宽用300 mm Si片不同于90 nm,如运用多步单片精密磨削,不仅可以提高表面几何参数,还可以减小表面特别是亚表面的损伤层.而对于加工设备,要求更加精密,特别是单面精抛光,在保证去除量的同时还要使Si片表面各点的去除量保持均匀.对目前300 mm Si片的磨削、抛光及清洗的每一道工艺流程,特别是相对于65 nm技术的一些加工流程及方法的最新发展进行了详细的论述,指出了300 mm Si片加工工艺的发展趋势.  相似文献   

12.
池慧雄 《电子与封装》2013,(7):32-34,42
随着半导体工业的发展,对芯片的厚度要求愈来愈薄。在半导体制造中通过对硅片进行背面减薄达到芯片变薄的目的。然而由于硅片的厚度变薄,在后续的制造过程中也增加了硅片破裂的概率。对于已经几乎加工完毕的芯片,破片造成的成本显然是相当高昂的。文章对硅片在背面减薄工序和流通环节中可能产生破片的因素进行了研究探索,通过对设备的部分装置进行改造,改进流通环节中的一些方法,经过总结数据,验证了硅片在背面减薄工序中降低破片率的可行性。  相似文献   

13.
MEMS F-P 干涉型压力传感器   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足工业、航天、国防等领域对微型化压力传感器的需求,提出了基于微机电系统(MEMS,Micro electromechanical System)技术制作的非本征型光纤法布里-珀罗(F-P)压力传感器,该传感器传感头由全玻璃材料构成。主要研究了MEMS 技术制作全玻璃结构式压力传感器工艺,结合溅射、光刻、腐蚀等工艺在7 740 wafer 基底上制作出F-P 腔体,利用低压化学气相沉积(LPCVD)的方法在基底上沉积一层40 nm 的非晶硅作为中间层。通过阳极键合技术在温度400℃下完成玻璃与玻璃的键合,并搭建了该传感器的压力测量平台。实验结果表明:在压力线性范围0~400 kPa 内传感器具有很高的重复性,达到0.3%。灵敏度达到1.764 nm/kPa;在传感器使用范围0~80℃内,热敏感系数为 0.15 nm/℃。该传感器的研究对设计制作改善了该类传感器的热膨胀失配问题,对低温漂型压力传感器的研究有一定参考价值。  相似文献   

14.
在直径300mmSi片制备过程中,利用双面磨削技术能获得高精度的表面参数,但同时却会在Si片表面留下明显的磨削印痕,这会影响Si片表面平整度.通过选择#2000和#3000砂轮对Si片进行磨削实验,获得两种型号砂轮磨削出Si片的形貌图、磨削印痕和局部平整度,并分别进行了比较.结果表明,选择粒度更细的#3000砂轮能够有效地弱化Si片表面的磨削印痕,同时改善边缘局部平整度差的问题,从而提高Si磨削片表面的局部平整度.  相似文献   

15.
基于DOE优化光学玻璃晶片边缘磨削工艺   总被引:1,自引:0,他引:1  
在光电器件的制造过程中,用光学玻璃晶片作为电路制作的基板材料。玻璃晶片通过在大面积的玻璃面板上划圆获得。划圆后会形成非常锐利的边缘,需要将锐利边缘磨削成圆弧形,以减少在后续加工中产生破损、崩边。在光学玻璃晶片的边缘磨削中,合适的玻璃晶片边缘磨削参数对于晶片边缘磨削后的崩边情况、磨削斜面宽度、中心误差等均有很大影响。利用DOE试验方法,光学玻璃晶片边缘磨削过程中有效减小崩边,并给出了影响因素,获得并验证了最优化的磨削工艺参数,减少了晶片磨削后的崩边破损。  相似文献   

16.
A new soft abrasive grinding wheel (SAGW) used in chemo-mechanical grinding (CMG) was developed for machining silicon wafers. The wheel consisted of magnesia (MgO) soft abrasives, calcium carbonate (CaCO3) additives and magnesium oxychloride bond. Surface topography, roughness and subsurface damage of the silicon wafers ground using the new SAGW were comprehensively investigated. The results showed that the grinding with the new SAGW produced a surface roughness of about 0.5 nm in Ra and a subsurface damage layer of about 10 nm in thickness, which is comparable to that produced by chemo-mechanical polishing. This study also revealed that the chemical reactions between MgO abrasive, CaCO3 additives and silicon material did occur during grinding, thereby generating a soft reactant layer on the ground surface. The reactant layer was easily removed during the grinding process.  相似文献   

17.
Two experiments were performed that demonstrate an extension of the ion-cut layer transfer technique where a polymer is used for planarization and bonding. In the first experiment hydrogen-implanted silicon wafers were deposited with two to four microns low-temperature plasma-enhanced tetraethoxysilane (TEOS). The wafers were then bonded to a second wafer, which had been coated with a spin-on polymer. The bonded pairs were heated to the ion-cut temperature resulting in the transfer of a 400 nm layer silicon. The polymer enabled the bonding of an unprocessed silicon wafer to the as-deposited TEOS with a microsurface roughness larger than 10 nm, while the TEOS provided sufficient stiffness for ion cut. In the second experiment, an intermediate transfer wafer was patterned and vias were etched through the wafer using a 25% tetramethylammonium hydroxide (TMAH) solution and nitride as masking material. The nitride was then stripped using dilute hydrofluoric acid (HF). The transfer wafer was then bonded to an oxidized (100 nm) hydrogen-implanted silicon wafer. After ion-cut annealing a silicon-on-insulator (SOI) wafer was produced on the transfer wafer. The thin silicon layer of the SOI structure was then bonded to a third wafer using a spin-on polymer as the bonding material. The sacrificial oxide layer was then etched away in HF, freeing the thin silicon from the transfer wafer. The result produced a thin silicon-on-polymer structure bonded to the third wafer. These results demonstrate the feasibility of transferring a silicon layer from a wafer to a second intermediate “transfer” or “universal” reusable substrate. The second transfer step allows the thin silicon layer to be subsequently bonded to a potential third device wafer followed by debonding of the transfer wafer creating stacked three-dimensional structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号