首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the density matrix of a bipartite quantum state, could we decide whether it is separable, free entangled, or PPT entangled? Here, we give a negative answer to this question by providing a lot of concrete examples of $16 \times 16$ density matrices, some of which are well known. We find that both separability and distillability are dependent on the decomposition of the density matrix. To be more specific, we show that if a given matrix is considered as the density operators of different composite systems, their entanglement properties might be different. In the case of $16 \times 16$ density matrices, we can look them as both $2 \otimes 8$ and $4 \otimes 4$ bipartite quantum states and show that their entanglement properties (i.e., separable, free entangled, or PPT entangled) are completely irrelevant to each other.  相似文献   

2.
In this letter, we mainly study the local indistinguishability of mutually orthogonal maximally entangled states, which are in canonical form. Firstly, we present a feasible sufficient and necessary condition for distinguishing such states by one-way local operations and classical communication (LOCC). Secondly, for the application of this condition, we exhibit one class of maximally entangled states that can be locally distinguished with certainty. Furthermore, sets of $d-1$ indistinguishable maximally entangled states by one-way LOCC are demonstrated in $d \otimes d$ (for $d=7, 8, 9, 10$ ). Interestingly, we discover there exist sets of $d-2$ such states in $d \otimes d$ (for $d=8, 9, 10$ ), which are not perfectly distinguishable by one-way LOCC. Finally, we conjecture that there exist $d-1$ or fewer indistinguishable maximally entangled states in $d \otimes d(d \ge 5)$ by one-way LOCC.  相似文献   

3.
Uncertainty relations for more than two observables have found use in quantum information, though commonly known relations pertain to a pair of observables. We present novel uncertainty and certainty relations of state-independent form for the three Pauli observables with use of the Tsallis $\alpha $ -entropies. For all real $\alpha \in (0;1]$ and integer $\alpha \ge 2$ , lower bounds on the sum of three $\alpha $ -entropies are obtained. These bounds are tight in the sense that they are always reached with certain pure states. The necessary and sufficient condition for equality is that the qubit state is an eigenstate of one of the Pauli observables. Using concavity with respect to the parameter $\alpha $ , we derive approximate lower bounds for non-integer $\alpha \in (1;+\infty )$ . In the case of pure states, the developed method also allows to obtain upper bounds on the entropic sum for real $\alpha \in (0;1]$ and integer $\alpha \ge 2$ . For applied purposes, entropic bounds are often used with averaging over the individual entropies. Combining the obtained bounds leads to a band, in which the rescaled average $\alpha $ -entropy ranges in the pure-state case. A width of this band is essentially dependent on $\alpha $ . It can be interpreted as an evidence for sensitivity in quantifying the complementarity.  相似文献   

4.
Xian Xu 《Acta Informatica》2012,49(7-8):445-484
This is a paper on distinguishing and relating two important kinds of calculi through expressiveness, settling some critical but long unanswered questions. The delimitation of higher-order and first-order process calculi is a basic and pivotal topic in the study of process theory. Particularly, expressiveness studies mutual encodability, which helps decide whether process-passing or name-passing is more fundamental, and the way they ought to be used in both theory and practice. In this paper, we contribute to such demarcation with three major results. Firstly $\pi $ (first-order pi-calculus) can faithfully express $\varPi $ (basic higher-order pi-calculus). The calculus $\varPi $ has the elementary operators (input, output, composition and restriction). This actually is a corollary of a more general result, that $\pi $ can encode $\varPi ^r$ ( $\varPi $ enriched with the relabelling operator). Secondly $\varPi $ cannot interpret $\pi $ reasonably. This is of more significance since it separates $\varPi $ and $\pi $ by drawing a well-defined boundary. Thirdly an encoding from $\pi $ to $\varPi ^r$ is revisited and discussed, which not only implies how to make $\varPi $ more useful but also stresses the importance of name-passing in $\pi $ .  相似文献   

5.
Using S.L. Sobolev’s method, we construct the interpolation splines minimizing the semi-norm in $K_2(P_2)$ , where $K_2(P_2)$ is the space of functions $\phi $ such that $\phi ^{\prime } $ is absolutely continuous, $\phi ^{\prime \prime } $ belongs to $L_2(0,1)$ and $\int _0^1(\varphi ^{\prime \prime }(x)+\varphi (x))^2dx<\infty $ . Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline is exact for the trigonometric functions $\sin x$ and $\cos x$ . Finally, in a few numerical examples the qualities of the defined splines and $D^2$ -splines are compared. Furthermore, the relationship of the defined splines with an optimal quadrature formula is shown.  相似文献   

6.
We present techniques to parallelize membership tests for Deterministic Finite Automata (DFAs). Our method searches arbitrary regular expressions by matching multiple bytes in parallel using speculation. We partition the input string into chunks, match chunks in parallel, and combine the matching results. Our parallel matching algorithm exploits structural DFA properties to minimize the speculative overhead. Unlike previous approaches, our speculation is failure-free, i.e., (1) sequential semantics are maintained, and (2) speed-downs are avoided altogether. On architectures with a SIMD gather-operation for indexed memory loads, our matching operation is fully vectorized. The proposed load-balancing scheme uses an off-line profiling step to determine the matching capacity of each participating processor. Based on matching capacities, DFA matches are load-balanced on inhomogeneous parallel architectures such as cloud computing environments. We evaluated our speculative DFA membership test for a representative set of benchmarks from the Perl-compatible Regular Expression (PCRE) library and the PROSITE protein database. Evaluation was conducted on a 4 CPU (40 cores) shared-memory node of the Intel Academic Program Manycore Testing Lab (Intel MTL), on the Intel AVX2 SDE simulator for 8-way fully vectorized SIMD execution, and on a 20-node (288 cores) cluster on the Amazon EC2 computing cloud. Obtained speedups are on the order of $\mathcal O \left( 1+\frac{|P|-1}{|Q|\cdot \gamma }\right) $ , where $|P|$ denotes the number of processors or SIMD units, $|Q|$ denotes the number of DFA states, and $0<\gamma \le 1$ represents a statically computed DFA property. For all observed cases, we found that $0.02<\gamma <0.47$ . Actual speedups range from 2.3 $\times $ to 38.8 $\times $ for up to 512 DFA states for PCRE, and between 1.3 $\times $ and 19.9 $\times $ for up to 1,288 DFA states for PROSITE on a 40-core MTL node. Speedups on the EC2 computing cloud range from 5.0 $\times $ to 65.8 $\times $ for PCRE, and from 5.0 $\times $ to 138.5 $\times $ for PROSITE. Speedups of our C-based DFA matcher over the Perl-based ScanProsite scan tool range from 559.3 $\times $ to 15079.7 $\times $ on a 40-core MTL node. We show the scalability of our approach for input-sizes of up to 10 GB.  相似文献   

7.
The parallel complexity class $\textsf{NC}$ 1 has many equivalent models such as polynomial size formulae and bounded width branching programs. Caussinus et al. (J. Comput. Syst. Sci. 57:200–212, 1992) considered arithmetizations of two of these classes, $\textsf{\#NC}$ 1 and $\textsf{\#BWBP}$ . We further this study to include arithmetization of other classes. In particular, we show that counting paths in branching programs over visibly pushdown automata is in $\textsf{FLogDCFL}$ , while counting proof-trees in logarithmic width formulae has the same power as $\textsf{\#NC}$ 1. We also consider polynomial-degree restrictions of $\textsf{SC}$ i , denoted $\textsf{sSC}$ i , and show that the Boolean class $\textsf{sSC}$ 1 is sandwiched between $\textsf{NC}$ 1 and $\textsf{L}$ , whereas $\textsf{sSC}$ 0 equals $\textsf{NC}$ 1. On the other hand, the arithmetic class $\textsf{\#sSC}$ 0 contains $\textsf{\#BWBP}$ and is contained in $\textsf{FL}$ , and $\textsf{\#sSC}$ 1 contains $\textsf{\#NC}$ 1 and is in $\textsf{SC}$ 2. We also investigate some closure properties of the newly defined arithmetic classes.  相似文献   

8.
The paper presents a linear matrix inequality (LMI)-based approach for the simultaneous optimal design of output feedback control gains and damping parameters in structural systems with collocated actuators and sensors. The proposed integrated design is based on simplified $\mathcal{H}^2$ and $\mathcal{H}^{\infty}$ norm upper bound calculations for collocated structural systems. Using these upper bound results, the combined design of the damping parameters of the structural system and the output feedback controller to satisfy closed-loop $\mathcal{H}^2$ or $\mathcal{H}^{\infty}$ performance specifications is formulated as an LMI optimization problem with respect to the unknown damping coefficients and feedback gains. Numerical examples motivated from structural and aerospace engineering applications demonstrate the advantages and computational efficiency of the proposed technique for integrated structural and control design. The effectiveness of the proposed integrated design becomes apparent, especially in very large scale structural systems where the use of classical methods for solving Lyapunov and Riccati equations associated with $\mathcal{H}^2$ and $\mathcal{H}^{\infty}$ designs are time-consuming or intractable.  相似文献   

9.
We present a method to construct ??X?? form unitary Yang-Baxter ${\breve R}$ matrices, which act on the tensor product space ${V_{i}^{j_{1}}\otimes V_{i+1}^{j_{2}}}$ . We can obtain a set of entangled states for (2j 1?+?1)?× (2j 2?+?1)-dimensional system with these Yang-Baxter ${\breve R}$ matrices. By means of Yang-Baxter approach, a 8?× 8 Yang-Baxter Hamiltonian is constructed. Yangian symmetry and Yangian generators as shift operators for this Yang-Baxter system are investigated in detail.  相似文献   

10.
In this paper, We propose a simple and practical method (that works only for triangular fuzzy numbers) to solve an arbitrary fully fuzzy linear system (FFLS) in the form $\widetilde{A}\otimes \widetilde{x}=\widetilde{b},$ where $\widetilde{A}_{n \times n}$ is a fuzzy matrix, $\widetilde{x}$ and $\widetilde{b}$ are n × 1 fuzzy vectors. The idea of the presented method is constructed based on the extending 0-cut and 1-cut solution of original fully fuzzy linear systems (FFLS). We also define a fuzzy solution of FFLS and establish the necessary and sufficient conditions for the uniqueness of a fuzzy solution.  相似文献   

11.
This paper is devoted to the study of self-referential proofs and/or justifications, i.e., valid proofs that prove statements about these same proofs. The goal is to investigate whether such self-referential justifications are present in the reasoning described by standard modal epistemic logics such as  $\mathsf{S4}$ . We argue that the modal language by itself is too coarse to capture this concept of self-referentiality and that the language of justification logic can serve as an adequate refinement. We consider well-known modal logics of knowledge/belief and show, using explicit justifications, that $\mathsf{S4}$ , $\mathsf{D4}$ , $\mathsf{K4}$ , and  $\mathsf{T}$ with their respective justification counterparts  $\mathsf{LP}$ , $\mathsf{JD4}$ , $\mathsf{J4}$ , and  $\mathsf{JT}$ describe knowledge that is self-referential in some strong sense. We also demonstrate that self-referentiality can be avoided for  $\mathsf{K}$ and  $\mathsf{D}$ . In order to prove the former result, we develop a machinery of minimal evidence functions used to effectively build models for justification logics. We observe that the calculus used to construct the minimal functions axiomatizes the reflected fragments of justification logics. We also discuss difficulties that result from an introduction of negative introspection.  相似文献   

12.
We present a technique for numerically solving convection-diffusion problems in domains $\varOmega $ with curved boundary. The technique consists in approximating the domain $\varOmega $ by polyhedral subdomains $\mathsf{{D}}_h$ where a finite element method is used to solve for the approximate solution. The approximation is then suitably extended to the remaining part of the domain $\varOmega $ . This approach allows for the use of only polyhedral elements; there is no need of fitting the boundary in order to obtain an accurate approximation of the solution. To achieve this, the boundary condition on the border of $\varOmega $ is transferred to the border of $\mathsf{D }_h$ by using simple line integrals. We apply this technique to the hybridizable discontinuous Galerkin method and provide extensive numerical experiments showing that, whenever the distance of $\mathsf{{D}}_h$ to $\partial \varOmega $ is of order of the meshsize $h$ , the convergence properties of the resulting method are the same as those for the case in which $\varOmega =\mathsf{{D}}_h$ . We also show numerical evidence indicating that the ratio of the $L^2(\varOmega )$ norm of the error in the scalar variable computed with $d>0$ to that of that computed with $d=0$ remains constant (and fairly close to one), whenever the distance $d$ is proportional to $\min \{h,Pe^{-1}\}/(k+1)^2$ , where $Pe$ is the so-called Péclet number.  相似文献   

13.
For hyper-rectangles in $\mathbb{R}^{d}$ Auer (1997) proved a PAC bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ , where $\varepsilon$ and $\delta$ are the accuracy and confidence parameters. It is still an open question whether one can obtain the same bound for intersection-closed concept classes of VC-dimension $d$ in general. We present a step towards a solution of this problem showing on one hand a new PAC bound of $O(\frac{1}{\varepsilon}(d\log d + \log \frac{1}{\delta}))$ for arbitrary intersection-closed concept classes, complementing the well-known bounds $O(\frac{1}{\varepsilon}(\log \frac{1}{\delta}+d\log \frac{1}{\varepsilon}))$ and $O(\frac{d}{\varepsilon}\log \frac{1}{\delta})$ of Blumer et al. and (1989) and Haussler, Littlestone and Warmuth (1994). Our bound is established using the closure algorithm, that generates as its hypothesis the intersection of all concepts that are consistent with the positive training examples. On the other hand, we show that many intersection-closed concept classes including e.g. maximum intersection-closed classes satisfy an additional combinatorial property that allows a proof of the optimal bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ . For such improved bounds the choice of the learning algorithm is crucial, as there are consistent learning algorithms that need $\Omega(\frac{1}{\varepsilon}(d\log\frac{1}{\varepsilon} +\log\frac{1}{\delta}))$ examples to learn some particular maximum intersection-closed concept classes.  相似文献   

14.
The behavior of total quantum correlations (discord) in dimers consisting of dipolar-coupled spins 1/2 are studied. We found that the discord $Q=0$ at absolute zero temperature. As the temperature $T$ increases, the quantum correlations in the system increase at first from zero to its maximum and then decrease to zero according to the asymptotic law $T^{-2}$ . It is also shown that in absence of external magnetic field $B$ , the classical correlations $C$ at $T\rightarrow 0$ are, vice versa, maximal. Our calculations predict that in crystalline gypsum $\hbox {CaSO}_{4}\cdot \hbox {2H}_{2}{\hbox {O}}$ the value of natural $(B=0)$ quantum discord between nuclear spins of hydrogen atoms is maximal at the temperature of 0.644  $\upmu $ K, and for 1,2-dichloroethane $\hbox {H}_{2}$ ClC– $\hbox {CH}_{2}{\hbox {Cl}}$ the discord achieves the largest value at $T=0.517~\upmu $ K. In both cases, the discord equals $Q\approx 0.083$  bit/dimer what is $8.3\,\%$ of its upper limit in two-qubit systems. We estimate also that for gypsum at room temperature $Q\sim 10^{-18}$  bit/dimer, and for 1,2-dichloroethane at $T=90$  K the discord is $Q\sim 10^{-17}$  bit per a dimer.  相似文献   

15.
We study the null controllability of Kolmogorov-type equations $\partial _t f + v^\gamma \partial _x f - \partial _v^2 f = u(t,x,v) 1_{\omega }(x,v)$ in a rectangle $\Omega $ , under an additive control supported in an open subset $\omega $ of $\Omega $ . For $\gamma =1$ , with periodic-type boundary conditions, we prove that null controllability holds in any positive time, with any control support $\omega $ . This improves the previous result by Beauchard and Zuazua (Ann Ins H Poincaré Anal Non Linéaire 26:1793–1815, 2009), in which the control support was a horizontal strip. With Dirichlet boundary conditions and a horizontal strip as control support, we prove that null controllability holds in any positive time if $\gamma =1$ or if $\gamma =2$ and $\omega $ contains the segment $\{v=0\}$ , and only in large time if $\gamma =2$ and $\omega $ does not contain the segment $\{v=0\}$ . Our approach, inspired from Benabdallah et al. (C R Math Acad Sci Paris 344(6):357–362, 2007), Lebeau and Robbiano (Commun Partial Differ Equ 20:335–356, 1995), is based on two key ingredients: the observability of the Fourier components of the solution of the adjoint system, uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.  相似文献   

16.
Let $ Q$ be a complete residuated lattice. Let $\text {SetR}(Q)$ be the category of sets with similarity relations with values in $ Q$ (called $ Q$ -sets), which is an analogy of the category of classical sets with relations as morphisms. A cut in an $ Q$ -set $(A,\delta )$ is a system $(C_{\alpha })_{\alpha \in Q}$ , where $C_{\alpha }$ are subsets of $A\times Q$ . It is well known that in the category $\text {SetR}(Q)$ , there is a close relation between special cuts (called f-cuts) in an $ Q$ -set on one hand and fuzzy sets in the same $ Q$ -set, on the other hand. Moreover, there exists a completion procedure according to which any cut $(C_{\alpha })_{\alpha }$ can be extended onto an f-cut $(\overline{C_{\alpha }})_{\alpha }$ . In the paper, we prove that the completion procedure is, in some sense, the best possible. This will be expressed by the theorem which states that the category of f-cuts is a full reflective subcategory in the category of cuts.  相似文献   

17.
After 100 years of effort, the classification of all the finite subgroups of $SU(3)$ is yet incomplete. The most recently updated list can be found in Ludl (J Phys A Math Theory 44:255204, 2011), where the structure of the series $(C)$ and $(D)$ of $SU(3)$ -subgroups is studied. We provide a minimal set of generators for one of these groups which has order $162$ . These generators appear up to phase as the image of an irreducible unitary braid group representation issued from the Jones–Kauffman version of $SU(2)$ Chern–Simons theory at level $4$ . In light of these new generators, we study the structure of the group in detail and recover the fact that it is isomorphic to the semidirect product $\mathbb Z _9\times \mathbb Z _3\rtimes S_3$ with respect to conjugation.  相似文献   

18.
Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables $\mathcal{M}$ , with the same constraint C defined by a finite-state automaton $\mathcal{A}$ on each row of $\mathcal{M}$ and a global cardinality constraint $\mathit{gcc}$ on each column of $\mathcal{M}$ . We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the $\mathit{gcc}$ constraints from the automaton $\mathcal{A}$ . The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We also provide a domain consistency filtering algorithm for the conjunction of lexicographic ordering constraints between adjacent rows of $\mathcal{M}$ and (possibly different) automaton constraints on the rows. We evaluate the impact of our methods in terms of runtime and search effort on a large set of nurse rostering problem instances.  相似文献   

19.
This paper introduces the notion of distributed verification without preprocessing. It focuses on the Minimum-weight Spanning Tree (MST) verification problem and establishes tight upper and lower bounds for the time and message complexities of this problem. Specifically, we provide an MST verification algorithm that achieves simultaneously $\tilde{O}(m)$ messages and $\tilde{O}(\sqrt{n} + D)$ time, where m is the number of edges in the given graph G, n is the number of nodes, and D is G’s diameter. On the other hand, we show that any MST verification algorithm must send $\tilde{\varOmega}(m)$ messages and incur $\tilde{\varOmega}(\sqrt{n} + D)$ time in worst case. Our upper bound result appears to indicate that the verification of an MST may be easier than its construction, since for MST construction, both lower bounds of $\tilde{\varOmega}(m)$ messages and $\tilde{\varOmega}(\sqrt{n} + D)$ time hold, but at the moment there is no known distributed algorithm that constructs an MST and achieves simultaneously $\tilde{O}(m)$ messages and $\tilde{O}(\sqrt{n} + D)$ time. Specifically, the best known time-optimal algorithm (using ${\tilde{O}}(\sqrt {n} + D)$ time) requires O(m+n 3/2) messages, and the best known message-optimal algorithm (using ${\tilde{O}}(m)$ messages) requires O(n) time. On the other hand, our lower bound results indicate that the verification of an MST is not significantly easier than its construction.  相似文献   

20.
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by ${\mathbb{F}}^{*}$ -graphs— $\mathbb {F}$ -coloured graphs where each edge has exactly one colour from $\mathbb{F}\setminus \{0\},\ \mathbb{F}$ a field—and named respectively $\mathbb{F}$ -rank-width and $\mathbb {F}$ -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for $\mathbb{F}^{*}$ -graphs and prove that $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width are characterised by a list of $\mathbb{F}^{*}$ -graphs to exclude as vertex-minors (this list is finite if $\mathbb{F}$ is finite). An algorithm that decides in time O(n 3) whether an $\mathbb{F}^{*}$ -graph with n vertices has $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) at most k, for fixed k and fixed finite field $\mathbb{F}$ , is also given. Graph operations to check MSOL-definable properties on $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号