首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Iron regulatory elements (IREs) are a family of 28 nucleotide, non-coding elements which regulate the translation of ferritin mRNA (iron storage), erythroid delta-aminolevulinic acid synthase mRNA (heme synthesis) and the stability of the transferrin receptor (TfR) mRNA (iron uptake). IREs in the 5' end control translation (ribosome binding) and IREs in the 3' end control turnover (degradation). The specific regulator protein, the IRE-BP, is a member of the aconitase family but binds RNA only in the apo form without the Fe-S cluster. Cellular iron alters the IRE/IRE-BP interaction leading to translation of ferritin and eALAS mRNAs but degradation of the TfR mRNA. IRE function requires proximity to the 5' cap, achieved either by a short leader (eALAS) or a long, base-pairing flanking region (FL) (ferritin); a conserved triplet of FL base pairs enhances repression of ferritin mRNA. TfR mRNA has five AU-rich IREs which can also form an alternate structure with inter-IRE base pairs, in the absence of the IRE-BP. Ferritin IREs regulate both translation repression (negative control-IRE-BP dependent) and enhancement (positive control-initiation factor dependent); IRE-BP binding induces conformational changes in the FL. IREs use CAGUGU/C to form a hairpin loop with specific variations in the stem such as internal or bulge loops. A current structural model obtained using metallonucleases (1,10-phenanthroline-Cu, Fe-EDTA, Fe-bleomycin) and a preliminary analysis of the NMR spectrum, is a distorted helix with folds. The effect of cellular iron, Fe-S clusters and heme on the IRE-BP/RNA is not completely understood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Iron regulatory proteins (IRP)-1 and 2 are cytoplasmic mRNA-binding proteins that control intracellular iron homeostasis by regulating the translation of ferritin mRNA and stability of transferrin receptor mRNA in an iron-dependent fashion. Although structurally and functionally similar, the two IRP are different in their mode of regulation, pattern of tissue expression and modulation by multiple factors, such as bioradicals. In the present study RNA bandshift assays demonstrated that IRP-2, but not IRP-1, activity was higher in cultured cells than in tissues. Increased expression of IRP-2 in cell lines was not related to immortalization and differentiation but seemed associated to cell proliferation, although not closely dependent on cell growth rate. As a growing cell consumes more iron than its quiescent counterpart, we assessed the iron status of cell lines and found that ferritin content was lower than in tissues. Analysis of IRP activity in cell lines supplemented with heme or non-heme iron and in livers of iron-loaded and iron-deficient rats indicated that IRP-2 responds more promptly than IRP-1 to modulations of iron content. We propose that enhanced IRP-2 activity in cultured cells could be due to a proliferation-dependent, relative iron deficiency that is sensed first by IRP-2.  相似文献   

9.
10.
Polyribosomal complexes beneath postsynaptic sites on dendrites provide a substrate for local translation of particular mRNAs, but the signals that target mRNAs to synapses remain to be defined. Here, we report that high frequency activation of the perforant path projections to the dentate gyrus causes newly synthesized mRNA for the immediate-early gene (IEG) Arc to localize selectively in activated dendritic segments. Newly synthesized Arc protein also accumulates in the portion of the dendrite that had been synaptically activated. The targeting of Arc mRNA was not disrupted by locally inhibiting protein synthesis, indicating that the signals for mRNA localization reside in the mRNA itself. This novel mechanism through which newly synthesized mRNA is precisely targeted to activated synapses is well suited to play a role in the enduring forms of activity-dependent synaptic modification that require protein synthesis.  相似文献   

11.
12.
13.
Cellular iron metabolism comprises pathways of iron-protein synthesis and degradation, iron uptake via transferrin receptor (TfR) or release to the extracellular space, as well as iron deposition into ferritin and remobilization from such stores. Different cell types, depending on their rate of proliferation and/or specific functions, show strong variations in these pathways and have to control their iron metabolism to cope with individual functions. Studies with cultured cells have revealed a specific cytoplasmic protein, called 'iron regulatory protein' (IRP) (previously known as IRE-BP or IRF), that plays a key role in iron homoeostasis by regulating coordinately the synthesis of TfR, ferritin, and erythroid 5-aminolevulinate synthase (eALAS). Present in all tissues analysed, IRP is identical with the [4Fe-4S] cluster containing cytoplasmic aconitase. Under conditions of iron chelation, IRP is an apo-protein which binds with high affinity to specific RNA stem-loop elements (IREs) located 5' of the initiation codon in ferritin and eALAS mRNA, and 3' in the untranslated region of TfR mRNA. At 5' sites IRF blocks mRNA translation, whereas 3' it inhibits TfR mRNA degradation. Both effects compensate for low intracellular iron concentrations. Under high iron conditions, IRP is converted to the holo-protein and dissociates from mRNA. This reverses the control towards less iron uptake and more iron storage. Iron can therefore be considered as a feedback regulator of its own metabolism. It has recently become evident that nitric oxide, produced by macrophages and other cell types in response to interferon-gamma, induces the IRE-binding activity of IRF. Moreover measurements of the RNA-binding activity of IRP in tissue extracts may provide valuable information on iron availability.  相似文献   

14.
15.
Although the cause of Parkinson's disease is unknown, oxidative stress has been implicated in its pathogenesis. This theory postulates that normal metabolic processes in the nigrostriatal dopaminergic system may lead to loss of neurons, and that iron-dependent membrane lipid peroxidation may play an important role in the neuronal death. Recent research concerning iron-dependent lipid peroxidation is presented. First, catechols (including dopa and dopamine) and iron form strong oxidizing complexes and induce lipid peroxidation (LPO) in phospholipid liposomes. Active oxygen species including superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen, do not participate in this LPO, which is inhibited by an excess of dopa (dopamine). Cultured neurons and the substantia nigra are vulnerable to LPO. Second, synthetic melanin prepared by the autooxidation of catechols promotes LPO in the presence of iron. The effects of scavenging agents indicate that this LPO is mediated by superoxide, but not by other oxygen free radicals. Neuronal cell cultures are destroyed by this LPO. Third, catechols and superoxide produced by microglia cause the release of iron from ferritin. Microglia stimulated by phorbol myristate acetate produce superoxide and cause the release of iron from ferritin. Catechols also induce mobilization of ferritin iron. The released iron (i.e. loosely-bound iron) is available to iron-dependent LPO. These data suggest that the biochemical and morphological characteristics of the substantia nigra, which are concomitant with its functional role, provoke iron-dependent lipid peroxidation. It is essential to elucidate how iron bound loosely to low molecules comes into contact with catechols, neuromelanin and superoxide. Drugs that chelate iron site-specifically or modulate the microglial function may bring about some favorable changes in the disease process.  相似文献   

16.
The translation of ferritin and erythroid 5-aminolevulinate synthase mRNAs is regulated via a specific high-affinity interaction between an iron-responsive element in the 5' untranslated region of ferritin and erythroid 5-aminolevulinate synthase mRNAs and a 98-kDa cytoplasmic protein, the iron-regulatory factor. Iron-regulatory factor was expressed in vaccinia-virus-infected HeLa cells (hIRFvac) and in Escherichia coli (hIRFeco). An N-terminal histidine tag allowed a rapid one-step purification of large quantities of soluble recombinant protein. Both hIRFvac and hIRFeco bound specifically to iron-responsive elements and were immunoprecipitated by iron-regulatory-factor antibodies. Using in-vitro-transcribed chloramphenicol-acetyltransferase mRNAs bearing an iron-responsive element in the 5' untranslated region, specific repression of chloramphenicol-acetyltransferase translation by hIRFvac and hIRFeco was demonstrated in wheat-germ extract. In addition, hIRFvac and hIRFeco were shown to display aconitase activity. Treatment of hIRFvac and hIRFeco with FeSO4 resulted in a drastic reduction in iron-responsive-element-binding of iron-regulatory factor, but caused a strong stimulation of its aconitase activity. The results establish that recombinant iron-regulatory factor is a bifunctional protein; after purification, it binds to iron-responsive elements and represses translation in vitro. Following iron treatment, iron-responsive-element binding is lost and aconitase activity is gained. No eukaryotic co-factor seems to be required for the conversion of the iron-responsive-element binding to the aconitase form of the protein.  相似文献   

17.
18.
Levels of temporary invalidity because of catching cold were analyzed in 101 working women over two years and these women's levels of serum iron, total iron-binding capacity of the serum, transferrin saturation with iron, serum ferritin, and red cell ferritin measured. Women with stable iron reserves in the body virtually have no sick leaves because of catching cold, whereas in those with iron deficiency susceptibility to catching cold is increased, and if iron metabolism intensity in the body grows, invalidity periods are much longer. Normalization of not only iron reserves in the body, but correction of iron metabolism as well should be regarded as a factor exerting a favorable effect on body resistance to catching cold.  相似文献   

19.
There is increasing evidence that certain mRNAs are present in dendrites and can be translated there. The present study uses two strategies to evaluate whether dendrites also possess the machinery for protein glycosylation. First, precursor labeling techniques were used to conjunction with autoradiography to visualize glycosyltransferase activities that are characteristic of the rough endoplasmic reticulum (RER) (mannose) or the Golgi apparatus (GA) (galactose and fucose) in dendrites that had been separated from their cell bodies and in intact neurons treated with brefeldin A or low temperature. Second, immunocytochemical techniques were used to define the subcellular distribution of proteins that are considered markers of the RER (ribophorin I) and GA (p58, alpha-mannosidase II, galactosyltransferase, and TGN38/41). Autoradiographic analysis revealed that isolated dendrites incorporated sugar precursors in a tunicamycin-sensitive and protein synthesis-dependent manner. Moreover, when intact neurons were pulse-labeled with 3H-labeled sugars at low temperature or after treatment with brefeldin A, labeling was distributed over proximal and sometimes distal dendrites. Immunolabeling for RER markers was predominantly localized in cell bodies but extended for a considerable distance into dendrites of all neurons. Immunolabeling for GA markers was confined to the cell body in approximately 70% of the neurons, but in 30% of the neurons, the staining extended into proximal and middle dendrites. These results indicate that the machinery for glycosylation extends well into dendrites in many neurons.  相似文献   

20.
The role of iron supply in the regulation of hepatic transferrin synthesis by the isolated perfused rat liver was studied using nutritional iron deficiency as the experimental model. The increased transferrin release encountered in iron deficiency could be equated with enhanced de novo synthesis as evidenced by the inhibitory effects of cycloheximide and measurements of intrahepatic protein pools before and after perfusion. Refeeding with iron, sufficient to restore plasma iron and hepatic ferritin iron but before correction of anaemia, promoted a reduction towards normal in the transferrin synthetic rate. This effect was not produced by transfusional correction of the anaemia, suggesting a specific response to iron supply. Phenobarbitone treatment, which produced a marked fall in hepatic ferritin iron concentration but no change in haemoglobin or plasma iron concentrations, promoted a specific enhancement of transferrin synthesis in both control and iron deficient livers. The concentration of liver iron stores appears to be a major regulatory factor in the control of hepatic transferrin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号