共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
基于Apriori算法改进的关联规则提取算法 总被引:9,自引:2,他引:9
通过对Apriori算法的基本思想和性能的研究分析,认为Apriori算法存在一些不足。并且根据这些不足提出了相应的改进算法对Apriori算法进行优化,从而得到一种改进的Apriori算法,与原算法相比运算效率大大提高。 相似文献
3.
数据挖掘中关联规则的一种高效Apriori算法 总被引:21,自引:0,他引:21
在数据挖掘中关联规则的频繁项集计算时,通过一种改进的Apriori算法,即用升序替代原来的按字母次序对项集进行排序,可大大精简候选频繁集,而且能保持频繁集的完整性,减少计算开销。 相似文献
4.
5.
关联规则挖掘中Apriori算法的研究与改进 总被引:5,自引:0,他引:5
经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和剪枝策略;改进对事务的处理方式,减少Apriori算法中的模式匹配所需的时间开销;改进首次对数据库的处理方法,使得整个算法只扫描一次数据库,并由此提出了改进算法。实验结果表明,改进算法在性能上得到了明显提高。 相似文献
6.
7.
关联规则Apriori算法 总被引:1,自引:0,他引:1
李金忠 《电脑编程技巧与维护》2008,(6):35-37
阐述了关联规则的基本概念、Apriori算法及其实验结果分析,并描述了Apriori算法的性能瓶颈与改进策略。 相似文献
8.
9.
10.
关联规则的提取是数据挖掘中重要的研究课题,目的在于挖掘事务数据库中有趣的关联,Apriori算法是挖掘关联规则的经典算法。该文对Apriori算法进行研究,发现该算法存在着一些缺点,并对其进行改进,用实例说明这些改进能够正确有效的实现该算法。 相似文献
11.
12.
本文提出一种基于兴趣集和权的算法(IWA),由用户提出他们感兴趣的项目并在数据库中找出与之相关的项目,通过给每个项目赋以不同权值来标识项目不同的重要性,从而可以挖掘出Apriori算法挖不出但却极具价值的规则。 相似文献
13.
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。 相似文献
14.
15.
16.
基于关联规则挖掘领域的Apriori算法的优化研究 总被引:2,自引:0,他引:2
挖掘关联规则是数据挖掘领域的一个重要研究课题,在挖掘数据间的关联性时具有非常重要的意义。本文在分析关联规则挖掘及Apriori算法的基础上,从压缩扫描数据集及提高剪枝效率等方面对算法进行了优化改进,从而达到了降低消耗、提高算法效率的目的。最后,通过实例对优化的Apriori算法作了详细介绍。 相似文献
17.
18.
为了从大数据集中挖掘关联规则,提出了一种改进的二进制粒子群优化算法(GRBPSO)用于挖掘关联规则.首先,结合关联规则设计BPSO算法的适应度函数,然后对种群进行预处理,保证初始种群的质量,最后设计一种缩减搜索空间的优化策略,以减少搜索空间.基于六个高维数据集,将GRBPSO算法与普通BPSO算法进行比较以证明其有效性... 相似文献
19.
对挖掘关联规则的Apriori算法关键思想进行了研究,给出该算法的一个改进算法,提高了原算法的性能。 相似文献