首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Catalysis communications》2001,2(10):323-327
Hydrogenation of (E)-2-hexenal was carried out in a liquid phase using Co-based bimetallic catalysts (M–Co/Al2O3, M=Pd, Pt, Ru, Rh, Sn, Fe, or Cu). Pd–Co/Al2O3 showed the highest activity among the catalysts tested and catalyzed the hydrogenation of CC bond predominantly to produce hexanal and 1-hexanol. Pt–Co/Al2O3 was more active than monometallic Co/Al2O3 for the hydrogenation of CO bond. The excellent result, 92% selectivity to (E)-2-hexen-1-ol formation at 90% conversion, was obtained by the hydrogenation over Pt–Co/Al2O3 bimetallic catalyst. No improved activities were observed for the other bimetallic catalysts.  相似文献   

2.
Zirconia supported nickel and cobalt-nickel bimetallic catalysts were prepared and characterized for various physico-chemical properties. The hydrogenation of carbon monoxide was studied over these catalysts in the pressure range of 101.3–1654kPa, temperature range of 513–533K, weight hourly space velocity range of 8–14h–1 and H2/CO mole ratio of 2. Catalysts containing both Co and Ni were found to give higher C5+ hydrocarbons selectivity compared to that containing only Ni. A maximum C5+ hydrocarbons selectivity of 55wt% was obtained at 655kPa pressure, 523K and 9.6h–1 of WHSV with catalyst containing 4.03wt% Co and 2.64wt% Ni. The C2 and C3 olefin contents of the products decreased with increase in pressure. Improved deactivation behavior of the catalysts was observed when operated at high pressure.  相似文献   

3.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

4.
Aiming at enhancing H2 production in water gas shift (WGS) for fuel cell application, a small amount of oxygen was added to WGS reaction toward oxygen-enhanced water gas shift (OWGS) on ceria-supported bimetallic Pd–Cu and Pt–Cu catalysts. Both CO conversion and H2 yield were found to increase by the oxygen addition. The remarkable enhancement of H2 production by O2 addition in short contact time was attributed to the enhanced shift reaction, rather than the oxidation of CO on catalyst surface. The strong dependence of H2 production rate on CO concentration in OWGS kinetic study suggested O2 lowers the CO surface coverage. It was proposed that O2 breaks down the domain structure of chemisorbed CO into smaller domains to increase the chance for coreactant (H2O) to participate in the reaction and the heat of exothermic surface reaction helping to enhance WGS kinetics. Pt–Cu and Pd–Cu bimetallic catalysts were found to be superior to monometallic catalysts for both CO conversion and H2 production for OWGS at 300 °C or lower, while the superiority of bimetallic catalysts was not as pronounced in WGS. These catalytic properties were correlated with the structure of the bimetallic catalysts. EXAFS spectra indicated that Cu forms alloys with Pt and with Pd. TPR demonstrated the strong interaction between the two metals causing the reduction temperature of Cu to decrease upon Pd or Pt addition. The transient pulse desorption rate of CO2 from Pd–Cu supported on CeO2 is faster than that of Pd, suggesting the presence of Cu in Pd–Cu facilitate CO2 desorption from Pd catalyst. The oxygen storage capacity (OSC) of CeO2 in the bimetallic catalysts indicates that Cu is much less pyrophoric in the bimetallic catalysts due to lower O2 uptake compared to monometallic Cu. These significant changes in structure and electronic properties of the bimetallic catalysts are the result of highly dispersed Pt or Pd in the Cu nanoparticles.  相似文献   

5.
Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO2 concentrations are somewhat higher. Here, we report the use of Fe-based F–T catalysts for the conversion of syngas produced by the air-blown, atmospheric pressure gasification of southern pine wood chips. The syngas from the gasification step is compressed and cleaned in a series of sorbents to produce the following feed to the F–T step: 2.78 % CH4, 11 % CO2, 15.4 % H2, 21.3 % CO, and balance N2. The relatively high level of CO2 suggests the need to use catalysts that are active for CO2 hydrogenation as well is resistant to oxidation in presence of high levels of CO2. The work reported here focuses on the effect of these different structural promoters on iron-based F–T catalysts with the general formulas 100Fe/5Cu/4K/15Si, 100Fe/5Cu/4K/15Al and 100Fe/5Cu/4K/15Zn. Although the effect of Si, Al or Zn on iron-based F–T catalysts has been examined previously for CO+CO2 hydrogenation, we have found no direct comparison of these three structural promoters, nor any studies of these promoters for a syngas produced from biomass. Results show that catalysts promoted with Zn and Al have a higher extent of reduction and carburization in CO and higher amount of carbides and CO adsorption as compared to Fe/Cu/K/Si. This resulted in higher activity and selectivity to C5+ hydrocarbons than the catalyst promoted with silica.  相似文献   

6.
On-site ammonia (NH3) decomposition is considered as a potential path to supply CO x-free hydrogen for fuel cell vehicles. In this article, monometallic catalysts (Fe, Co, Ni, and Mo) and bimetallic catalysts (Fe–Co, Mo–Co, Fe–Ni, and Mo–Ni) were prepared and tested in plasma-catalytic NH3 decomposition, where 6Fe–4Ni catalyst exhibited the highest activity and synergistic capability with plasma. At 500°C, NH3 were completely decomposed (>99.9% NH3 conversion); the rate of H2 production and the energy consumption of H2 production reached 0.96 mol g−1 h−1 and 0.050 kW h (mol g−1)−1, respectively. The 200 h continuous operation results indicate an excellent durability of 6Fe–4Ni catalyst. The catalysts characterization and plasma diagnosis results indicate that NH3 was pre-activated by plasma into excited-state species (NH3, ˙NH2, and ˙NH), and the 6Fe–4Ni catalyst exhibited the highest capability to adsorb excited NH3, ˙NH2, and ˙NH species, which could be the main reason why 6Fe–4Ni catalyst exhibited the highest activity. © 2018 American Institute of Chemical Engineers AIChE J, 65: 691–701, 2019  相似文献   

7.
The oxidized and weakly reducible perovskite oxide YBa2Cu3O7 − x (YBCO) has been prepared as a catalyst, supported on γ‐Al2O3. It was further modified by (i) impregnation with Ru and Pd and (ii) cobalt incorporation via co‐precipitation. All the catalysts were either 20% (w/w) YBCO/γ‐Al2O3 or 2% (w/w) Ru, Pd or Co/20% (w/w) YBCO/γ‐Al2O3. The catalysts were characterized using temperature programmed reduction (TPR), surface area measurements and X‐ray diffraction (XRD) studies before and after various treatments. They were studied as catalysts in the pressure range 20–50 atmospheres and in the temperature range 523–573 K in an autoclave equipped with a spinning basket catalyst container. The Pd‐, Ru‐ and Co‐modified catalysts gave predominantly methanation products, along with some C2–C4 hydrocarbons. However the YBCO/γ‐Al2O3 catalyst exhibited significant methanol selectivity at 50 atmospheres and at 523 K X‐ray diffraction studies revealed the presence of Cu(0), Cu(I) and Cu(II) after reduction and the species Cu(0) and Cu(I) are probably essential to CH3OH production. © 2000 Society of Chemical Industry  相似文献   

8.
The selective hydrogenation of cyclopentadiene to cyclopentene has been studied in the liquid phase using Pd and Pd Me/Al2O3 bimetallic catalysts (Me = Mn, Ni, Co, W). The highest activity was obtained with Pd Co and Pd W/Al2O3. For these catalysts, no hydrogen or CO chemisorption was detected although Pd could be seen by XPS at 335·8 eV; it is considered that new species, more active for the selective hydrogenation of cyclopentadiene, appeared at the catalyst surface. The sulfur resistance towards thiophene has also been studied. It was observed that the highest sulfur resistance is coincident with the highest activity. XPS analysis shows that the poisoning species is thiophene adsorbed on the catalyst surface.  相似文献   

9.
This work is aimed at evaluating the performance of several catalysts in the partial hydrogenation of sunflower oil. The catalysts are composed of noble (Pd and Pt) and base metals (Ni, Co and Cu), supported on both silica and alumina. The following order can be proposed for the effect of the metal on the hydrogenation activity: Pd > Pt > Ni > Co > Cu. At a target iodine value of 70 (a typical value for oleomargarine), the production of trans isomers is minimum for supported nickel catalysts (25.7–32.4 %, depending on the operating conditions). Regarding the effect of the support, Al2O3 allows for more active catalysts based on noble metals (Pd and Pt) and Co, the effect being much more pronounced for Pt. Binary mixtures of catalysts have been studied, in order to strike a balance between catalyst activity and product distribution. The results evidence that Pd/Al2O3–Co/SiO2 mixture has a good balance between activity and selectivity, and leads to a very low production of trans isomers (11.8 %) and a moderate amount of saturated stearic acid (13.5 %). Consequently, the utilization of cobalt‐based catalysts (or the addition of cobalt to other metallic catalysts) could be considered a promising alternative for the hydrogenation of edible oil.  相似文献   

10.
Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.  相似文献   

11.
An extensive study of Fischer–Tropsch synthesis (FTS) on carbon nanotubes (CNTs)-supported bimetallic cobalt/iron catalysts is reported. Up to 4 wt.% of iron is added to the 10 wt.% Co/CNT catalyst by co-impregnation. The physico-chemical properties, FTS activity and selectivity of the bimetallic catalysts were analyzed and compared with those of 10 wt.% monometallic cobalt and iron catalysts at similar operating conditions (H2/CO = 2:1 molar ratio, P = 2 MPa and T = 220 °C). The metal particles were distributed inside the tubes and the rest on the outer surface of the CNTs. For iron loadings higher than 2 wt.%, Co–Fe alloy was revealed by X-ray diffraction (XRD) techniques. 0.5 wt.% of Fe enhanced the reducibility and dispersion of the cobalt catalyst by 19 and 32.8%, respectively. Among the catalysts studied, cobalt catalyst with 0.5% Fe showed the highest FTS reaction rate and percentage CO conversion. The monometallic iron catalyst showed the minimum FTS and maximum water–gas shift (WGS) rates. The monometallic cobalt catalyst exhibited high selectivity (85.1%) toward C5+ liquid hydrocarbons, while addition of small amounts of iron did not significantly change the product selectivity. Monometallic iron catalyst showed the lowest selectivity for 46.7% to C5+ hydrocarbons. The olefin to paraffin ratio in the FTS products increased with the addition of iron, and monometallic iron catalyst exhibited maximum olefin to paraffin ratio of 1.95. The bimetallic Co–Fe/CNT catalysts proved to be attractive in terms of alcohol formation. The introduction of 4 wt.% iron in the cobalt catalyst increased the alcohol selectivity from 2.3 to 26.3%. The Co–Fe alloys appear to be responsible for the high selectivity toward alcohol formation.  相似文献   

12.
Supported nickel oxide based catalysts were prepared by wetness impregnation method for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 °C. Fe/Co/Ni (10:30:60)–Al2O3 and Pr/Co/Ni (5:35:60)–Al2O3 catalysts were revealed as the most potential catalysts, which yielded 2.9% and 6.1% of CH4 at reaction temperature of 300 °C, respectively. From XPS, Ni2O3 and Fe3O4 were suggested as the surface active components on the Fe/Co/Ni (10:30:60)–Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/Co/Ni (5:35:60)–Al2O3 catalyst.  相似文献   

13.
A series of χ wt % Pd‐(1‐χ) wt % Ir (χ = 0.75, 0.50, and 0.25) catalysts supported on γ‐Al2O3 have been prepared by co‐impregnation and calcination‐reduction, and subsequently employed in the hydrogenation of 2‐ethylanthraquinone—a key step in the manufacture of hydrogen peroxide. Detailed studies showed that the size and structure of the bimetallic Pd–Ir particles vary as a function of Pd/Ir ratio. By virtue of its small metal particle size and the strong interaction between Pd and Ir, the 0.75 wt % Pd–0.25 wt % Ir/Al2O3 catalyst afforded the highest yield of H2O2, some 25.4% higher than that obtained with the monometallic 1 wt % Pd catalyst. Moreover, the concentration of the undesired byproduct 2‐ethyl‐5,6,7,8‐tetrahydroanthraquinone (H4eAQ) formed using the Pd–Ir bimetallic catalysts was much lower than that observed with the pure Pd catalyst, which can be assigned to the geometric and electronic effects caused by the introduction of Ir. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3955–3965, 2017  相似文献   

14.
Silica-supported cobalt and iron catalysts (10% Co and 5% or 1% Fe) were prepared and tested in a flow reactor in the hydrogenation of CO, using H2/CO = 2:1 (molar) ratio in the feed, an overall pressure of 20 bar, and temperatures of 493, 513 and 533 K. Activity and product distribution were found to depend strongly on the composition of the catalysts. Thus, the Fe-free catalyst was selective toward C5+ formation (67% selectivity to C5+) and a low methanation rate, while the Co-free counterpart was less selective toward C5+, with a simultaneous increase in the formation of lighter fractions and alcohols. The behavior of the bimetallic CoFe catalysts was different. In the bimetallic CoFe10/5-c catalyst, selectivity to alcohols increased with respect to the monometallic Co10-c, and this was moderately high (15% to C3+ OH alcohols). In the bimetallic CoFe10/1-c sample, selectivity to alcohols was fairly high (29%), and ethanol reached the highest proportion (17%) among the alcohols. Surface and structural information concerning the activated catalysts, derived from X-ray diffraction, temperature-programmed reduction, Mössbauer, and photoelectron spectroscopy, revealed the appearance of a CoFe phase under the conditions employed during the catalyst activation. In the bimetallic cobalt–iron catalysts, this CoFe phase is suggested to be responsible for the rather high selectivity toward alcohol formation.  相似文献   

15.
A series of Mo2C and Mo2N supported catalysts have been synthesized using a parallel synthesis and high throughput screening approach. The high surface area Mo2C and Mo2N supports were prepared using temperature programmed reaction methods. Metals including Co, Cu, Fe, Ni, Pd, Pt, Ru, and Sn were impregnated onto these supports using a synthesis system. Methanol steam reforming (MSR) activities and selectivities for these materials were evaluated using a high throughput-screening reactor. The support type, metal type and concentration, and metal precursor type influenced the activity and selectivity patterns. Of more than 400 materials that were synthesized and evaluated, the Pt/Mo2N, Pt–Ni/Mo2N, Pt–Fe/Mo2N, and Pd–Fe/Mo2C catalysts possessed the highest activities. Some of these formulations were more active than a commercial Cu/Zn/Al2O3 catalyst, however, the CO2 selectivities were typically lower. At similar conversions, materials that were highly active were not selective while the less active materials were very selective. Many of the highly active catalysts included noble metals while the highly selective catalysts included base metals.  相似文献   

16.
Studies were conducted to investigate the effect of Pd on the Fischer–Tropsch Synthesis (FTS) selectivity, activity and kinetics as well as on the water–gas shift activity of an iron catalyst. Two palladium promoted catalysts (Pd0.002/Fe100 and Pd0.005/Fe100) were prepared from a base Fe100/Si5.1 (atomic ratio) catalyst. Results of FTS over the two palladium promoted catalysts were compared to those obtained from the K/Fe/Si base catalyst and a Cu/K/Fe/Si catalyst. The results indicate that Pd enhanced the FT activity while the selectivity for CO2 and CH4 changed little compared to the results for the base catalyst and the Cu promoted catalyst. Palladium promotion had a negative effect on the C2—C4 olefin to paraffin ratio. Pd promotion led to a higher WGS rate than the other two catalysts at high syngas conversions. A higher WGS rate compared to the FTS rate was obtained only for the Pd promoted catalysts. The FTS rate constant for the Pd promoted catalyst is higher than the base catalyst but lower than for the Cu promoted catalyst.  相似文献   

17.
A study is presented of the kinetics and oxidation selectivity of methyl-ethyl-ketone (MEK) in air over bimetallic PdOx(0–1 wt% Pd)–MnOx(18 wt% Mn)/Al2O3 and monometallic PdOx(1 wt% Pd)/Al2O3 and MnOx(18 wt% Mn)/Al2O3 catalysts. Reaction rate data were obtained at temperatures in the 443–523 K range and for MEK partial pressures in the reactor feed of between 6.5 and 126.6 Pa. Products of both MEK combustion and partial oxidation reactions were found. Monometallic Pd/Al2O3 was the most selective catalyst for complete oxidation whereas the partial oxidation of MEK in the presence of manganese oxides was significant. The maximum yield for the partial oxidation products (acetaldehyde, methyl-vinyl-ketone, and diacetyl) was always below 10%. Kinetic studies showed that the rates of CO2 formation over PdOx/Al2O3 were well-fitted by the surface redox Mars–van Krevelen (MvK) kinetic expression and also by a Langmuir–Hinshelwood (LH) model derived after considering the surface reaction between adsorbed MEK and oxygen as the rate-determining step. In the case of the Mn-containing catalysts the MvK model provides the best fit. Irrespective of the model, the kinetic parameters for the bimetallic Pd–Mn catalysts were between the values obtained for the monometallic samples, suggesting an additive rather than a cooperative effect between palladium and manganese species for MEK combustion.  相似文献   

18.
Performances of manganese oxide-supported cobalt, nickel, and their combinations of varying compositions have been investigated for CO hydrogenation to lower hydrocarbons using a fixed bed microreactor at atmospheric pressure and temperatures ranging from 525 to 575 K. While Co/MnO was found to exhibit high selectivity to olefins in the C2–C4 range, the total yield of hydrocarbons was low. Addition of nickel to cobalt gave a stable catalyst having improved hydrocarbon yields while still retaining good olefin selectivity. The effect of operating conditions on product distribution was studied. Lower space times and higher temperatures favored olefin selectivity. A comparison of Ni and Co catalysts on various support materials was made. MnO-supported Co catalyst gave significantly higher olefin/paraffin ratio than that obtained using conventional supports such as SiO2 or Al2O3. It was found that Co/MnO exhibited high water-gas shift activity, and suppressed hydrogen uptake due to strong metal-support interaction which favored olefin formation. This can be explained on the basis of competitive adsorption of water and hydrogen on the same surface sites resulting in low hydrogenation activity but improved olefin selectivity.  相似文献   

19.
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.  相似文献   

20.
Jatropha oil is a promising nonedible feedstock for producing renewable diesel. In this work, the hydrotreatment processing of jatropha oil was investigated. Instead of using conventional alumina-supported Co–Mo, Ni–Mo, and Ni–W catalysts that need sulfidation pretreatment, noble metals such as Pd and Ru were chosen. Trials were performed in an isothermal trickle-bed reactor and the reaction conditions were as follows: temperature 603–663?K, weight hourly space velocity (WHSV) 1 to 4/h, pressure 1.5–3?MPa, and H2/oil ratio 200–800 (v/v). Yield of n-C15 to n-C18 hydrocarbons was maximized (70.3 and 43.8% for Pd/Al2O3 and Ru/Al2O3, respectively) at the following conditions: T?=?663 K, WHSV?=?2/h, P?=?3?MPa, and H2/oil ratio?=?600 (v/v). Since Ru favored cracking reactions to a larger extent than Pd, the yield of C15 to C18 hydrocarbons over Ru/Al2O3 was lowered. Using simple first-order plots for oil conversion, activation energies for the hydrotreating process over Pd/Al2O3 and Ru/Al2O3 were found and they were equal to 109 and 121?kJ/mol, correspondingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号