首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles.The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements.The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3.  相似文献   

2.
A new hybrid sol–gel type film, composed of tetraethylorthosilicate (TEOS) and tetraocthylorthosilicate (TEOCS), and modified with different nanoparticle systems, has been investigated as a coating for protection of AA-2024-T3 aluminium alloy. The nanoparticle systems considered were either ZrO2 or CeO2 or their combination. The zirconia nanoparticles were prepared from a Zr (IV) propoxide sol (TPOZ), using an organic stabilizer, and the CeO2 nanoparticles were developed spontaneously after adding cerium nitrate solution to the hybrid sol. The chemical composition and the structure of the hybrid sol–gel films were examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion resistance of the coated AA-2024 alloy was examined by potentiodynamic polarization. The results revealed that, for short exposure times in the electrolyte, incorporation of ZrO2 or CeO2 nanoparticles in the hybrid film does not provide an increase in the corrosion resistance of the coated AA-2024 alloy. Further, the resistance was significantly reduced by increasing the nanoparticle content. Conversely, by incorporating both nanoparticles (ZrO2 and CeO2), the corrosion resistance of the resulting hybrid films increased slightly. The behavior changed significantly when the coated alloy was exposed to the electrolyte for 5 days. The corrosion resistance of the coatings, unmodified and modified with CeO2 or ZrO2 nanoparticles, decreased by two or three orders of magnitude, while the film modified with both nanoparticles (CrO2 and ZrO2) showed a relatively high corrosion resistance and responsiveness to activation processes during anodic polarization.  相似文献   

3.
Series of advanced anticorrosive hybrid coatings comprising of organo‐soluble fluorinated polyimide (SFPI) matrix dispersed with different feeding ratio of inorganic silica (SiO2) nanoparticles has been successfully prepared through a conventional chemical imidization of polyimide and acid catalyzed sol–gel process of TEOS. It should be noted that the incorporation of SiO2 nanoparticles into the SFPI matrix can effectively enhance the corrosion protection performance on cold‐rolled steel (CRS) electrode against corrosive species in saline condition when compared with that of neat polymeric coatings based on a series of standard electrochemical corrosion measurements, such as corrosion potential, polarization resistance, corrosion current, and impedance spectroscopy. POLYM. COMPOS., 31:2025–2034, 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
Organic–inorganic hybrid (OIH) thin films derived from the sol–gel process have emerged as sustainable metal pretreatment alternatives to toxic heavy metal-based systems. In recent years, such OIH systems based on Si, Zr, and Ti have been successfully developed and commercialized for pretreatment of aluminum alloys, galvanized steel, cold-rolled steel, and many other metals and alloys, for improving adhesion and corrosion resistance performance. A variety of approaches are being used to further enhance performance of such OIH systems to match or surpass that obtained from chromate-based systems. In the present study, a novel bis-silane compound has been synthesized and used as a primary sol–gel precursor for OIH coatings. In order to further improve their mechanical and corrosion resistance performance, colloidal nanoparticles have been incorporated. The microstructure of the deposited films as a function of their composition and formation of Si–O–Si structural network has been studied by Confocal Raman spectroscopic technique. The chemical structure of the OIH films has been characterized by FTIR analysis. Electrochemical impedance spectroscopy, DC polarization measurements, and accelerated neutral salt-fog test (ASTM B117) have been used to evaluate corrosion resistance performance of coatings on industrial aluminum alloy AA 3003 H14. Nano-indentation tests of these OIH films have been performed to study the effect of colloidal nanoparticles on coating micro/nano structure and their mechanical properties. The study reveals that colloidal nanoparticles improve the corrosion resistance of OIH coatings by formation of a protective barrier to diffusion of corrosive species to the metal surface. The optimum content of colloidal nanoparticles that can provide best corrosion protection has been determined. Electrochemical study provides useful insight into the significance of interaction between the sol–gel hybrid and silica particles in the corrosion protection mechanism.  相似文献   

5.
A series of sol–gel derived organic–inorganic hybrid coatings consisting of organic poly (vinyl carbazole) (PVK) and inorganic silica (SiO2), with 3‐(trimethoxysilyl)propyl methacrylate (MSMA) as coupling agent, were successfully synthesized. First of all, vinyl carbazole (VCz) monomers are copolymerized with MSMA by performing free‐radical polymerization reactions with AIBN as initiator. Subsequently, as‐prepared copolymer (i.e., sol–gel precursor) was further reacted with various feeding content of tetraethyl orthosilicate (TEOS) through organic acid (CSA)‐catalyzed sol–gel reaction to form a series of PVK‐silica hybrid (PSH) sol–gel materials. The as‐synthesized hybrid materials were subsequently characterized by Fourier‐Transformation infrared (FTIR) spectroscopy and solid‐state 29Si NMR. It should be noted that the PVK‐SiO2 hybrid (PSH) coating on cold‐rolled steel (CRS) electrode with low silica loading (e.g., 10 phr) was found to be superior in anticorrosion property over those of neat PVK based on a series of electrochemical measurements such as corrosion potential, polarization resistance, corrosion current, and electrochemical impedance spectroscopy in 3.5 wt% NaCl electrolyte. The better anticorrosion performance of PSH coatings as compared to that of neat polymer may probably be attributed to the stronger adhesion strength of PSH coatings on CRS electrode, which was further evidenced by Scotch tape test evaluation. Increase of adhesion strength of PSH coatings on CRS electrode may be associated with the formation of Fe–O–Si covalent bonds at the interface of PSH coating and CRS electrode based on the FTIR–RAS (reflection absorption spectroscopy) studies. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
To improve the corrosion protection of sol–gel derived hybrid silica/epoxy coatings containing boehmite nanoparticles, inorganic corrosion inhibitor was introduced into the coating via encapsulation in the nanoparticles. The morphology and chemical structure of the deposited films were studied by Scanning Electron Microscopy (SEM) and Fourier Transformed Infra-red Spectroscopy (FT-IR). The anticorrosion and self-healing properties of the coatings were evaluated by Electrochemical Impedance Spectroscopy (EIS). The high corrosion resistance performance of such coatings is due to the presence of encapsulated cerium nitrate corrosion inhibitor that can be released at the defects within the coating, hindering the corrosion reactions at defective sites.  相似文献   

7.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

8.
The aim of the present work is to synthesize through sol–gel approach new hybrid polymeric nanocomposites to be used as coating materials. An acrylic-based polymer was prepared by free-radical copolymerization of two monomers widely used for coatings, namely 2-ethylhexylacrylate (EHA) and glycidyl methacrylate (GMA) bearing epoxy moieties, in which silica nanoparticles were incorporated by in situ acid hydrolysis and subsequent condensation of tetraethoxysilane (TEOS). Glycidoxypropyl trimethoxysilane (GPTS) was used as coupling agent to fine-tune the compatibility between organic and inorganic phases. The morphology, mechanical properties and corrosion resistance of thin films applied on aluminum alloys were optimized by varying the content of silica nanoparticles whose properties were strongly affected by the TEOS/GPTS ratios. Performances of the obtained hybrid materials were scrutinized by atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and electrochemical impedance spectroscopy (EIS). Thus it was evidenced that an optimum amount of silica nanoparticles with a precise morphology and composition in term of TEOS/GPTS ratio is needed to maintain good coating barrier properties. Outstanding anti-corrosion protection was reached by using optimized hybrid films.  相似文献   

9.
Hybrid nanocomposite coatings were prepared by sol–gel method using silica, titania and alumina nanoparticles derived from their alkoxides precursors; in the presence of 3-glycidoxypropyl-trimethoxysilane (GPTMS) and bisphenol A (BPA) on 1050 aluminium alloy substrate. The effect of type and ratio of nanoparticles on mechanical behaviour of the coatings were investigated by dynamic mechanical thermal analysis (DMA) and nanoindentation experiments. DMA results demonstrated that the values of the glass transition temperature (Tg) and the temperature at maximum tan (δ), (Tt) as well as the storage modulus of the hybrid samples depend mainly on the silane content and titania to alumina molar ratio of nanoparticles in the coating composition. In addition, nanoindentaion experiments were performed to study the mechanical properties such as hardness, elastic modulus and E/H ratio for the nanocomposite hybrid coatings. Nanoindentation results indicate that the homogenous reinforced structure was formed in the surface of nanocomposite coating with incorporation of titania and alumina-derived nanoparticles. The incorporation of TiO2 in comparison with AlOOH nanoparticles in the GPTMS-based coatings showed an improving effect on E/H ratio.  相似文献   

10.
Thin organic coatings directly on steel sheets provide excellent barrier protection in saline environment and meet deformability demands, but fail in providing active corrosion protection. We have put an effort to solve this problem by formulating composite coatings using in-situ generation of metal oxide nanoparticles (NPs) in the polymer matrix. Here we present a new synthesis method of high performance polyetherimide composite with TiO2, MgO, and Al2O3 nanoparticles and their application for anti-corrosion coatings in saline environment. We observed that in-situ synthesis of these metal oxide NPs in the polymer curing process leads to evenly distribution and uniform size of nanoparticles. Thermo-mechanical property was analyzed for these three kinds of free-standing composite film to assess elasto-plastic behaviour and compared to mother polymer film. Results indicated that thermal stability and elastic behaviour of composites film are not affected to the great extent by the presence of NPs. The potentiodynamic and the electrochemical impedance studies on these composite coated steel panels were carried out to identify active–passive behaviour. Results showed active corrosion protection from nanocomposite coating based on TiO2 and barrier protection was noticed from nanocomposite coating based on MgO and Al2O3.  相似文献   

11.
In this article, a series of novel polyimide/silica (PI/SiO2) nanocomposite coating materials were prepared from tetraethoxysilane (TEOS), γ‐glycidyloxypropyltrimethoxysilane (GOTMS), and polyamic acid (PAA) via sol‐gel technique. PAA was prepared by the reaction of 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and bis (3‐aminophenyl) phenyphosphine oxide (BAPPO) in N‐methyl‐2‐ pyrrolidone (NMP). BAPPO was synthesized hydrogenation of bis (3‐nitrophenyl) phenyphosphine oxide (BNPPO) in the presence of Pd/C. The silica content in the hybrid coating materials was varied from 0 to 20 wt %. The molecular structures of the composite materials were analyzed by means of FT‐IR and 29Si‐NMR spectroscopy techniques. The physical and mechanical properties of the nanocomposites were evaluated by various techniques such as, hardness, contact angle, and optical transmission and tensile tests. These measurements revealed that all the properties of the nanocomposite coatings were improved noticeable, by the addition of sol‐gel precursor into the coating formulation. Thermogravimetric analysis showed that the incorporation of sol‐gel precursor into the polyimide matrix leads to an enhancement in the thermal stability and also flame resistance properties of the coating material. The surface morphology of the hybrid coating was characterized by scanning electron microscopy (SEM). SEM studies indicated that nanometer‐scaled inorganic particles were homogenously dispersed throughout the polyimide matrix © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Silica-based organic–inorganic hybrid nanocomposite films have been developed by sol–gel method for corrosion protection of AA2024 alloy. The sol–gel films have been synthesized from 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) precursors. Interlinked organic–inorganic networks can be formed because of the presence of both epoxy and silicon alkoxide functionalities in the precursor molecules. In order to investigate the effective factors on the properties of organically modified silicates films (Ormosils), different coatings with different organic and hydrolysis water content were developed. The films were prepared by dip-coating technique. The chemical composition and the structure of the hybrid sol–gel films were studied by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. The corrosion protection properties of the films were studied by potentiodynamic scanning (PDS) and salt spray tests. The results indicate that the hybrid films provided exceptional barrier and corrosion protection in comparison with untreated aluminium alloy substrate.  相似文献   

13.
Abstract

A hybrid organic–inorganic sol–gel coating was successfully prepared and subsequently functionalized individually with five different metal oxide additives. The effect of the incorporated oxides on the corrosion protection performance and scratch-resistance properties of the hybrid base coating on mild steel substrates was investigated using electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) as well as mechanical testing. The steel-coated specimens were immersed in 3.5?wt.% NaCl corrosive medium for two weeks and the results reveal an excellent corrosion protection performance by all coating formulations with a significant high corrosion-resistance property for the sample loaded with molybdenum oxide. Scanning electron microscopy (SEM) images proved the absence of corrosion signs, defects, micro cracks, or delamination on the surface of the coated samples. Compared with the pure hybrid coating, all the metal oxide-embedded coatings (except for the sample loaded with yttrium(III) oxide) show comparable aqueous contact angle values as well as enhanced hardness and adherence properties. No noticeable dependence was observed for the surface roughness parameters as a function of the type of incorporated metal oxide within the sol–gel matrix. Overall, the results of this study demonstrate that metal oxides can be advantageous to the desired properties of hybrid sol–gel coatings applied to steel surfaces.  相似文献   

14.
Silane sol–gel coatings are widely used as adhesion promoters between inorganic substrates, such as metals, and organic coatings. The aim of these pre-treatments is to enhance the corrosion protection performance of the organic coating improving the adhesion to the substrate and acting as a barrier against water and aggressive ions diffusion. It is a matter of fact that the silane sol–gel pre-treatments do not provide an active protection against corrosion processes except for the partial inhibition of the cathodic reaction. Inorganic pigments can improve the barrier properties of the silane sol–gel film, enhancing the resistance against corrosion. In this study, different amounts of montmorillonite nanoparticles were added to a water based silanes mixture in order to improve the barrier properties of the sol–gel coating. Hot dip galvanized steel was used as substrate. The sol–gel film consists of a combination of three different silanes, GPS, TEOS and MTES. The clay nanoparticles used in this study were mainly neat montmorillonite. The proper concentration of filler inside the sol–gel films was determined comparing the corrosion resistance of silane layers with different nanoparticles contents. Additionally, the effect of CeO2 and Ce2O3 enriched montmorillonite particles. The EIS analysis and the polarization measurements demonstrated that the optimal amount of neat montmorillonite nanoparticles is about 1000 ppm. The same electrochemical techniques highlighted the limited effect of the cerium oxides grafted to the clay nanoparticles on the corrosion resistance of the silane sol–gel film. The TEM analysis proved the presence of a nano-crystalline structure inside the silane sol–gel film due to the formation of crystalline silica domains.  相似文献   

15.
Silica based organic–inorganic hybrid nanocomposite coatings have been developed for corrosion protection of 1050 aluminum alloys by dip coatings technique. The hybrid sols were prepared by hydrolysis and condensation of 3-glycidoxypropyl-trimethoxysilane (GPTMS) and tetramethoxy silane (TMOS) in the presence of an acidic catalyst and bisphenol A (BPA) as cross-linking agent. Such prepared hybrid coatings were found to be relatively dense, uniform and defect free. Structural characterization of the hybrid coatings were performed using optical microscopy, scanning electron microscopy (SEM) and attenuated total reflectance-infrared (ATR-IR) spectroscopy. Corrosion resistance properties of the hybrid sol–gel coatings were studied by potentiodynamic scanning (PDS) and salt spray testing methods. The results indicate excellent barrier protection performance of the coatings. In addition, the effect of molar ratio of GPTMS–BPA (silane content) on corrosion resistance of the coatings was investigated. The PDS results demonstrated that the corrosion resistance of hybrid coatings improved by decreasing of silane content.  相似文献   

16.
The present work aims at evaluating the corrosion resistance of 316L stainless steel pre-treated with an organic–inorganic silane hybrid coating. The latter was prepared via a sol–gel process using 3-glycidoxypropyl-trimethoxysilane as a precursor and bisphenol A as a cross-linking agent. The corrosion resistance of the pre-treated substrates was evaluated by neutral salt spray tests, linear sweep voltammetry and electrochemical impedance spectroscopy techniques during immersion in a 3.5% NaCl solution. In addition, the effect of the drying method as an effective parameter on the microscopic features of the hybrid coatings was studied using Fourier transform infrared spectroscopy and scanning electron microscopy. Results show that the silane hybrid coatings provide a good coverage and an additional corrosion protection of the 316L substrate.  相似文献   

17.
In this article, a series of hybrid organic–inorganic coatings based on silica‐epoxy composite resins were prepared with the sol‐gel method by using γ‐aminopropyl triethoxysilane as a coupling agent. Especially, the research emphasized on the factors that influenced on the properties of the prepared hybrid coatings. Firstly, epoxy resin was reacted with γ‐aminopropyl triethoxysilane at a specific feeding molar ratio; subsequently, the asprepared sol–gel precursor was cohydrolyzed with tetraethoxysilane (TEOS) at various contents to afford chemical bondings to form silica networks and give a series of organic–inorganic hybrid coatings. They were loaded and cured on steel panels and characterized for FTIR, TGA, DSC, water contact angles (WCA), pencil hardness, surface & three‐dimensional morphological studies, and potentiodynamic polarization tests. The surfaces of the hybrid coatings showed Sea‐Island or Inverting Sea‐Island morphologies at a certain relative content of two components, which made the coatings possess hydrophobic property. Due to the contribution of organic and inorganic components, the prepared hybrid coatings possess a lot of properties such as pencil hardness, thermotolerance, and corrosion resistance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41010.  相似文献   

18.
To improve the corrosion protection of sol–gel derived hybrid silica/epoxy coatings containing boehmite nanoparticles, inorganic corrosion inhibitor was introduced into the coating via encapsulation in the nanoparticles. The morphology and chemical structure of the deposited films were studied by Scanning Electron Microscopy (SEM) and Fourier Transformed Infra-red Spectroscopy (FT-IR). The anticorrosion and self-healing properties of the coatings were evaluated by Electrochemical Impedance Spectroscopy (EIS). The high corrosion resistance performance of such coatings is due to the presence of encapsulated cerium nitrate corrosion inhibitor that can be released at the defects within the coating, hindering the corrosion reactions at defective sites.  相似文献   

19.
In this work, AISI 316L stainless steel was coated by nanostructured zirconia using the sucrose assisted sol–gel dip-coating route. Then, the effect of different calcination temperatures and the thickness of the coating on the corrosion protection of 316L stainless steel was investigated. Here, Zr(acac)4 and sucrose were used as starting materials and gelation agents, respectively. Thermogravimetry and differential thermal analysis, X-ray powder diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the coatings. XRD revealed that the pure tetragonal phase of zirconia was obtained at the calcination temperature of 300–500 °C. However, the mixture of monoclinic (m) and tetragonal (t) phase found in the zirconia coating calcined at 650 °C. Also, by increasing the calcination temperature from 300 to 650 °C, the mean of the crystallite size of structures was increased from 7 to 27 nm. AFM result show that the average roughness value of the sample calcined at 300 °C is 10.5 nm and the dimensions of the particles on the surface of this sample smaller than 50 nm. The potentiodynamic polarization and electrochemical impedance spectroscopy results revealed that the as-synthesized nanostructured sol–gel zirconia coatings exhibited a barrier property for the protection of the substrate. However, the highest corrosion resistance was obtained by the zirconia coating calcined at 300 °C. This was as a result of the desirable compromise of good adhesion, low defect density, and high barrier behaviour. Furthermore, zirconia nanoparticles were synthesized by calcination of the gel at the different temperature. The photocatalytic activity of samples was tested for degradation of methyl orange solutions. It is found that ZrO2 nanoparticles calcined at 500 °C have higher photocatalytic activity than the other samples under UV light.  相似文献   

20.
Anti-corrosion, anti-fungus, and self-cleaning properties of coatings containing ZnO–TiO2, SiO2–TiO2 and SiO2/TiO2/ZnO nanoparticles synthesized based on sol–gel precursors using tetra methoxysilane, 3-glycidoxypropyl trimethoxysilane, tetra (n-butyl orthotitanate) and zinc acetate dihydrate were investigated by FESEM, EDAX and TEM analyses. Results indicated uniform dispersion of inorganic nanoparticles in the range of 20–40 nm in size. Anti-corrosion property of the hybrid coating was characterized by EIS measurements and parametrically analyzed in an equivalent circuit when the coating was exposed to salt solution. Results showed that, ZnO and TiO2 nanoparticles enhance anti-corrosion property of the hybrid coatings. Anti-fungus and anti-bacterial properties of the coatings were determined by diameter of inhibition zone and inhabitation of bacterial growth, respectively. The coating containing ZnO and TiO2 nanoparticles showed anti-fungus and anti-bacterial properties which were related to their photocatalytic properties. Degradation of methylene blue in aqueous solution was determined by UV–Visible tests which indicated self-cleaning property of the coatings containing ZnO and TiO2 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号