首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
强脉冲离子束辐照对Ni3Al合金表面的改性   总被引:4,自引:0,他引:4  
采用X射线衍射、扫描电镜和电化学腐蚀等技术研究了3种不同束流密度的强脉冲离子束辐照对Ni3A1合金表面形貌与物相及电化学腐蚀性能的影响。结果表明:IPIB辐照时,试样最外表面的温度远超过Ni3A1合金的熔点,造成试样表面融化,从而清洁和抛光试样表面;随离子束流密度的增加,Ni3A1合金表面的物相呈现规律性的变化,分别产生形变织构、部分非晶及新相,使Ni3A1合金的抗电化学腐蚀性能得以提高。  相似文献   

2.
强脉冲离子束辐照对Ni3Al基超合金IC6相变的影响   总被引:2,自引:0,他引:2  
对定向凝固Ni3Al基超合金IC6,以不同功率密度的强脉冲离子束进行照射,利用X射线衍射分析,研究了辐照后材料表面所产生的物相变化,结果表明:当以低功率密度辐照时,材料表面形成形变织构;随着功率密度的增加,材料表面还会发生部分非晶化,当功率密度进一步增加时,材料表面出现了新相。  相似文献   

3.
强脉冲离子束辐照GH202镍基高温合金表面改性   总被引:1,自引:0,他引:1  
为改善GH202镍基高温合金的表面性能,使用成分为C~(n+)和H~+、加速电压为250kV的强脉冲离子束(IPIBs)对其进行表面辐照处理。采用光学显微镜、X射线衍射仪、扫描电子显微镜和显微硬度计等分别对不同参数辐照后的试样的表面形貌及性能进行测试。结果表明:辐照后GH202合金表面产生了熔坑,熔坑的尺寸随能量密度的增加而增加,最大可至70μm。熔坑的产生源于表层低熔点组分的喷发。表层的γ'相消失,辐照之后的试样表层产生了M_(23)C_6结构的碳化物并在辐照过程中受到压应力作用。辐照后试样表层近百微米深度内显微硬度均获得不同程度的提高。在高温氧化时,辐照后的样品表面更易于形成Cr_2O_3和Al_2O_3连续膜层氧化物,阻碍O元素向基体扩散,使得抗高温氧化性能得到改善。  相似文献   

4.
利用成分为Cn+(30 mol%)和H+(70 mol%),加速电压为250 kV,脉冲宽度为70 ns,束流密度为100 A/cm2的强流脉冲离子束(high intensity pulsed ion beam-HIPIB)辐照DZ4镍基高温合金,辐照次数分别为5、10和15次.利用透射电子显微镜(TEM)分析辐照前后合金表层微观结构的变化.结果显示,与原始样品比较,辐照不同次数后的样品最表面都产生了一层晶粒度为5~10 nm的多晶层,它是由DZ4合金中各元素的单质相组成的.在距表面一定深度范围内,不存在γ'相;随着深度的增加,γ'相的含量逐渐增加.  相似文献   

5.
采用特征晶体模型计算了Ni3Al合金中的Ni和Al原子的半径。依据特征晶体模型理论和从硬球模型所得到的不同间隙的间隙半径方程,计算了不同间隙的间隙半径、间隙能和固溶度。计算结果表明:硼原子趋向于占据6个Ni原子所围成的间隙。  相似文献   

6.
介绍了TEMP型强流脉冲离子束(HIPIB)装置及其工作原理。总结了HIPIB辐照不同金属材料表面后的硬度、耐磨性和耐蚀性的试验结果。HIPIB的瞬间高能量密度沉积导致金属表面快速加热冷却,产生显著的热-力学效应。辐照表面发生的细晶强化、加工硬化和相变强化,使金属材料在较大的深度范围(约100μm)内硬度提高,耐磨性改善;同时,辐照表面金属成分纯净化和组织结构均匀化,有利于提高金属材料耐蚀性。  相似文献   

7.
综述了强流脉冲离子束技术在金属材料表面改性研究的成果及对作用机理的解释,并展望了其发展前景.  相似文献   

8.
控制参数对Al—Al3Ni共晶合金间距的影响   总被引:1,自引:0,他引:1  
庄艳歆  胡壮麒 《金属学报》1999,35(4):353-356
在不同温度梯度及生长速度下测量了Al-Al3Ni共晶合金间距选择范围。实验结果表明,在一定生长速度下,共晶间距存在一容许范围。其宽度随生长速度的增加减小,在某一温梯度下,共晶间距与生长速度的关系满足λ^nu=常数n=1.7-2.0)的关系,温度梯度增加,其最大,最小及平均间距离略有减小。同时,Al-Al3Ni合金的间距选择范围与初始生长速度无关。  相似文献   

9.
以Ni、Al元素混合粉末为原料,用偏扩散-反应合成-烧结的粉末冶金法制备Ni3Al金属间化合物多孔材料,在室温20℃下pH为2和3时以及90℃下pH=2时研究Ni3Al金属间化合物多孔材料在盐酸溶液中的腐蚀动力学曲线、孔结构稳定性和表面形貌变化以及Tafel曲线,并与Ni金属多孔材料进行比较。结果表明:Ni3Al金属间化合物多孔材料在盐酸中的质量损失率显著地低于Ni多孔材料的,且Ni3Al金属间化合物多孔材料的孔结构在腐蚀介质中长期稳定,并显示出优异的抗盐酸腐蚀能力。  相似文献   

10.
采用药芯焊丝法制得Ni—Al-Cr3C2复合焊丝,将该焊丝堆焊于DZ125合金表面.在氩弧物理热的作用下,Ni与Al化合成Ni3Al并释放大量反应热;Cr3C2发生分解,并在随后凝固过程中重新析出细小的富Cr的M3C2和M7C3相.受冷却速率的影响,靠近母材区域的碳化物尺寸小于外层区域.母材合金元素进入焊接熔池中,发生一系列碳化和氧化反应,生成的化合物按自由能高低随温度降低顺序析出,导致在焊接熔合区形成大量富Hf,Ta,Ti和W的MC复合碳化物和少量氧化物,距焊层表面越近,数量越少直至消失.  相似文献   

11.
利用强流脉冲离子束(C+、H+)对变形镁合金AZ31的挤压态靶材分别进行0、1、30和50次辐照试验,分析辐照前后物相组成,检测随辐照次数增加靶材表面的显微硬度,并通过阳极氧化和盐雾试验检测耐蚀性能。结果表明,随HIPIB辐照次数增加,靶材表面显微硬度呈提高趋势,50次辐照表面显微硬度270 HV0.01,较原始靶材的63.7 HV0.01提高了3倍多;极化曲线显示自腐蚀电位和击穿电位提高,自腐蚀电流减小,30次辐照的自腐蚀电位达到-1363 mV,钝化区间为1065 mV;辐照处理后在盐雾试验中形成钝化膜使靶材腐蚀速率显著降低了65%,耐蚀性能得到较大改善。  相似文献   

12.
The surface of 316L stainless steel was irradiated by high-intensity pulsed ion beams (HIPIB) at ion current density of 100, 200 and 300 A/cm2 with 10 shots. The surface morphology and the phase structure in the near surface region of original and treated samples were analyzed with scanning electron microscope (SEM) and X-ray diffraction (XRD). Electron probe microanalysis (EPMA) was used to study the distribution of elements on the irradiated surfaces. It is found that the HIPIB irradiation can smooth the surface of the targets, and a preferred orientation presents in the surface layer of the treated samples. Otherwise, selective ablation of impurities occurs during the interaction between HIPIB and the targets. Due to the compress stress wave induced by the bombardment, the microhardness is increased significantly in a depth range of up to 200 μm, which reduces the friction coefficient of the treated surfaces and improves the wear resistance of them. Because the grain size reduces and the impurities content decreases in the irradiated surface layer, the electrochemical corrosion resistance is enhanced. In addition, HIPIB irradiation prolongates the fatigue life of 316L at room temperature due to a combination of the smooth surface and the high dislocation density in the surface layer of the treated samples.  相似文献   

13.
采用强流脉冲离子束在束流密度为200 A/cm2、辐照次数为1~10次条件下对AZ31镁合金微弧氧化膜进行辐照改性处理。采用扫描电子显微镜对氧化膜的表面及截面形貌进行表征;在Princeton Applied Research(PAR)2273型电化学工作站测量氧化膜的极化曲线。结果表明:在束流密度200 A/cm2、5次辐照条件下氧化膜表面获得连续、致密的改性层;以3.5%NaCl溶液为腐蚀液,氧化膜表面发生的腐蚀过程由辐照前的活化溶解向辐照后的钝化-孔蚀击穿转变;在束流密度200 A/cm2、5次辐照条件下击穿电位提高到最大值-800 mV(vs SCE)。强流脉冲离子束辐照产生的连续致密改性层是氧化膜耐蚀性改善的主要原因。  相似文献   

14.
The wear resistance and wear mechanism of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam (HIPIB) at an ion current density of 100 A/cm2 with shot number from one to ten are investigated by dry sliding wear tests. The cross-sectional microstructure and surface microhardness of the irradiated AZ31 magnesium alloys are examined by optical microscopy (OM) and Vickers tester, respectively. It is found that surface hardness increased with increasing shot number, from an original value of 570 MPa to a maximal value of 820 MPa with ten shots, and the wear rate of the samples irradiated with five and ten shots was about one order of magnitude less than that of the original sample. The transition from severe metallic wear to mild oxidative wear induced by HIPIB irradiation was identified through a combined analysis in surface morphology and chemical composition of wear tracks, mechanically mixed materials, wear debris and wear scars of counterface steel ball by using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA), which is mainly attributed to the significant increase in microhardness resulting from grain refinement on the irradiated surface.  相似文献   

15.
The influence of implantation of N+ ions of different energies on the nanostructure of 7049 Al substrates and the corrosion inhibition of produced Al samples in a 3.5% NaCl solution was studied. The X-ray diffraction (XRD) results confirmed the formation of AlN as a result of N+ ion implantation. The atomic force microscope (AFM) results showed that grains of larger scale are formed by increasing N+ energy which can be due to heat accumulation in the sample during implantation causing higher rate of diffusion in the sample, hence decreasing the number of defects. Corrosion resistance of the samples was studied by the electrochemical impedance spectroscopy (EIS) measurements. Results showed that corrosion resistance of implanted Al increases with increasing N+ ion energy. The equivalent circuits for the N+ implanted Al samples with different energies were obtained, using the EIS data which showed strong dependence of the equivalent circuit elements on the surface morphology of the samples. Finally, the relationship between corrosion inhibition and equivalent circuit elements was investigated.  相似文献   

16.
17.
金属氢化物(MH_x)应用于反应堆中子慢化剂、激光离子源片材料、中子发生器用靶时,会经历极端非平衡束流的辐照。本工作提出利用TEMP-6型强流脉冲离子束装置产生的强流脉冲离子束(high intensity pulsed ion beam,HIPIB)辐照Ti D_2膜,评估极端束流对膜力学性能的影响因素和影响程度。采用涂层附着力自动划痕仪、维氏显微硬度计对原始和辐照后的Ti D_2膜进行测试分析。研究结果发现:多次HIPIB的辐照效应导致膜面重熔再结晶,使其内部结构趋于更加致密化和平整化,能降低材料的摩擦系数并在一定程度上提高其初始临界载荷;D的释放有助于膜面韧性、显微硬度的提高,从而减轻了其塑性形变程度。  相似文献   

18.
Ti–Al surface alloy was fabricated using a cyclic pulsed liquid-phase mixing of predeposited 100 nm Al film with a-Ti substrate by low-energy high-current electron beam. Electron probe micro-analysis(EPMA),grazing incidence X-ray diffraction analysis(GIXRD),transmission electron microscopy(TEM), and nanoindentation were used to investigate the characterization of Ti–Al surface alloy. The experimental results show that the thickness of alloy layer is *3 lm, and the content of Al in the *1 lm thickness surface layer is *60 at%. The tetragonal TiAl and TiAl2intermetallics were synthesized at the top surface, which have nanocrystalline structure.The main phase formed in the *2.5 lm thick surface is TiAl, and there are few TiAl2and Ti3Al phase for the alloy.Dislocation is enhanced in the alloyed layer. The nanohardness of Ti–Al surface alloy increased significantly compared with a-Ti substrate due to the nanostructure and enhanced dislocation. Since the e-beam remelted repeatedly, the Ti–Al surface alloy mixed sufficiently with Ti substrate. Moreover, there is no obvious boundary between the alloyed layer and substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号