首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new series of poly(vinyl pyrrolidone) (PVP) and silver chloride nanoparticles (AgCl) composite fibres have been synthesized by electrospinning and gel-sol technology. We used sol-gel process to prepare AgCl nanoparticles in the PVP solution, and then the solutions were electrospun to obtain AgCl/PVP composite nanofibres. The final products were thoroughly characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FESEM), which showed the formation of AgCl nanoparticles/PVP composite nanofibres.  相似文献   

2.
熊万斌  刘燕  倪忠斌  陈明清 《功能材料》2012,43(11):1462-1464
以聚乙烯吡咯烷酮(PVP)为分散剂,2,2-二甲氧基-2-苯基苯乙酮(BDK)为引发剂,在乙醇和水(V(乙醇)/V(水)=7/3)的混合介质中,由紫外(UV)光引发苯乙烯(St)和甲基丙烯酸甲酯(MMA)进行分散共聚,研究了影响P(St-co-MMA)收率及其微球粒径的因素;在微球分散液中加入一定浓度的AgNO3,经UV原位催化Ag+还原,制备出了负载有Ag纳米颗粒的P(St-co-MMA)复合微球。用透射电子显微镜(TEM)、激光光散射(LLS)和X射线衍射(XRD)对微球的粒径及Ag纳米颗粒的负载情况进行了表征,发现P(St-co-MMA)微球的粒径均一,可控制在500~800nm之间,Ag纳米颗粒较均匀地负载于微球的表面,平均大小为20nm。  相似文献   

3.
Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30?nm have been observed in the case of microwave irradiation for 75?s whereas spherical particles of a size around 5-6?nm are formed for 60?s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.  相似文献   

4.
超声诱导单分散银胶体的制备及表征   总被引:1,自引:0,他引:1  
为了研究制备工艺条件对单分散银胶体稳定性的影响,在超声场作用下,以聚乙烯吡咯烷酮(PVP)为保护剂,硝酸银为前驱物,经硼氢化钾还原制备了稳定的单分散银胶体.考察了保护剂和还原剂用量、超声时间和超声功率等因素对银胶体稳定性的影响,利用透射电镜、选区电子衍射和分光光度等技术对制备的银胶体进行了表征.结果表明:银纳米粒子为面心立方(FCC)结构;PVP与AgNO3质量比为1:1时,PVP可有效保护银粒子,获得单分散的球形颗粒;AgNO3与KBH4摩尔比为1:2时,可制得单分散的类球形银纳米颗粒,直径约为20nm;超声50min制得的银胶体主要以单分散的球形纳米颗粒形式存在,粒径在10~20 nm范围内,稳定性好.  相似文献   

5.
Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO(2) particles using a simple aqueous reduction method. The reducing agent used was NaBH(4); different molar ratios TiO(2):Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO(2) particles and that the TiO(2):Ag molar ratio plays an important role. We used three different TiO(2)Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80?nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO(2) particles.  相似文献   

6.
化学还原法合成均匀银纳米线的条件研究   总被引:1,自引:0,他引:1  
采用化学还原法,以乙二醇为还原剂,聚乙烯砒咯烷酮(PVP K30)为表面活性剂,通过还原硝酸银(AgNO3)溶液直接制备了高浓度的Ag纳米线溶液,并研究了PVP与AgNO3溶液摩尔浓度比和AgNO3溶液浓度对Ag纳米线生长的影响.用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对纳米Ag晶体的生长形貌进行了比较,利...  相似文献   

7.
Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application   总被引:1,自引:0,他引:1  
Yu B  Leung KM  Guo Q  Lau WM  Yang J 《Nanotechnology》2011,22(11):115603
TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag(0) state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm(-2) and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.  相似文献   

8.
银纳米粒子的制备及其在光催化中的应用   总被引:1,自引:0,他引:1  
在乙醇/水溶剂中,以AgNO3为银源、聚乙烯吡咯烷酮为稳定剂,采用溶剂热还原法合成纳米银.通过调变乙醇-水的相对比例、AgNO3浓度和反应时间等,获得了尺寸均匀的准球形、立方体、线状等不同形貌的银纳米颗粒,利用XRD、SEM、TEM和紫外-可见吸收光谱进行了表征.初步考察了球形纳米银(粒径分布30~70nm)和立方纳米银(粒径80~140nm)修饰介孔二氧化钛对甲基橙的光催化降解性能,结果表明两种纳米银粒子对TiO2的光催化均具有增效作用,且银粒径越小,对光催化活性的提高越显著.  相似文献   

9.
《Materials Letters》2005,59(24-25):3046-3049
Ag nanoparticles dispersed in polyacrylonitrile (PAN) nanofiber film spun by electrospinning were in situ prepared by reduction of silver ions in N2H5OH aqueous solution. The Ag/PAN nanocomposite film was characterized by UV absorption spectroscopy, transmission electron microscopy (TEM) and surface-enhanced Raman scattering (SERS) spectroscopy. UV spectrum and TEM image show that silver nanoparticles with average diameter of 10 nm were obtained and dispersed homogeneously in PAN nanofibers. SERS spectrum indicates that the structure of PAN has been changed after Ag nanoparticles are dispersed in PAN.  相似文献   

10.
Ultra thin and aligned carbon nanofibres (CNFs) have been fabricated by heat treatment from aligned polyacrylonitrile (PAN) nanofibre precursors prepared by electrospinning. The alignment of the precursor nanofibres was achieved by using a modified electrospinning set up developed recently, where a tip collector was used to collect and align the nanofibres. The average diameter of the aligned CNFs is about 80 nm. The stabilization and carbonization behaviour were studied mainly based on the randomly oriented PAN nanofibres. The effects of stabilization and carbonization temperatures, temperature-increasing rates, and with and without substrates on the morphology and structure of the CNFs were investigated. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used to characterize the structure of the CNFs and thermogravimetric/differential temperature analysis was used to evaluate the thermal behaviour of PAN nanofibres.  相似文献   

11.
Biomimetic polymeric nanofibres are of great interest in tissue engineering and wound repair because of their structural similarity to extracellular matrix. In this work, biomimetic chitosan-based nanofibres with various diameters were prepared by ionically cross-linking with tripolyphosphate (TPP) in adipic acid medium and characterised using transmission electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Using dexamethasone sodium phosphate (DMP) and bovine serum albumin (BSA) as low and high molecular-weight bioactive molecule models, respectively, drug loading and in vitro release behaviours of chitosan-TPP nanofibres were investigated. The drug-loaded chitosan-TPP nanofibres showed a prolonged release profile with three distinct stages in physiological conditions because of the complicated release mechanisms involving diffusion of the drug and degradation of the nanofibre, and BSA-loaded nanofibres showed a smaller release rate than DMP-loaded nanofibres. It is proposed that biomimetic chitosan-based nanofibres may be of use in tissue engineering for sustained release of bioactive agents.  相似文献   

12.
The nanohybrids composed of silver nanoparticles and aromatic polyamide functionalized multiwalled carbon nanotubes (MWCNTs) is successfully synthesized and tested for their antibacterial activity against different pathogens. Prior to deposition of silver nanoparticles, acid treated MWCNTs (MWCNTs-COOH) were successively reacted with p-phenylenediamine and methylmethacrylate to form series of NH2-terminated aromatic polyamide dendrimers on the surface of MWCNTs through Michael addition and amidation. Existence of high abundance of amine groups on the surface of functionalized MWCNTs (f-MWCNTs) provided sites for formation of silver nanoparticles by the reduction of aqueous solution of AgNO3. The silver nanoparticles formed in the resulted f-MWCNTs-Ag nanohybrids were determined to be face centered cubic (fcc) symmetry. The structure and nature of f-MWCNTs and f-MWCNTs-Ag nanohybrids were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The dispersion state of f-MWCNTs and immobilization of silver nanoparticles on the surface of f-MWCNTs were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Elemental composition of f-MWCNTs-Ag nanohybrids was determined by energy dispersive X-ray spectroscopy (EDS). The antimicrobial activity of f-MWCNTs-Ag nanohybrids were estimated against E. coli, P. aeruginosa and S. aureu and compared with MWCNTs-COOH and f-MWCNTs. The results indicate that functionalization of MWCNTs with aromatic polyamide dendrimers and successive deposition of Ag nanoparticles could play an important role in the enhancement of antimicrobial activity.  相似文献   

13.
Tseng CH  Chen CY 《Nanotechnology》2008,19(3):035606
This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag(+) chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag(+) chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.  相似文献   

14.
A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4?nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10?min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4?nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71?eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725?nm, and the absorbance increased monotonically toward the UV region.  相似文献   

15.
王春来  关静  田丰 《材料导报》2015,29(16):36-39, 66
以海藻酸钠为还原剂和稳定剂,经紫外光照射 AgNO3溶液在室温下制备出纳米银。通过紫外吸收光谱(UV-Vis)、X 射线衍射(XRD)、红外光谱(FTIR)、透射电镜(TEM)、抑菌实验等对纳米银进行表征。结果表明,照射时间、海藻酸钠和 AgNO3浓度对纳米银生成均有影响。在 AgNO3浓度为1 mmol/L,海藻酸钠浓度为0.5%,反应时间为2 h 时能够生成理想的纳米银。此时生成的银纳米粒子为球形,粒径分布均匀,粒径大小在1~5 nm 之间,对大肠杆菌和金黄色葡萄球菌均有较强的抑菌性。  相似文献   

16.
Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO(3)) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO(3) concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5?nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10?nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory.  相似文献   

17.
Twisted nylon 6 nanofibre yarns containing microencapsulated phase change materials (MPCMs) were fabricated via electrospinning to prepare thermal regulating nanofibre yarns. Electrospun nanofibre yarns with different contents of MPCMs including 0.375, 0.75, 1.5 and 3 wt% were prepared. The surface morphology, crystallisation and thermal properties of the yarn samples were characterised by scanning electron microscopy (SEM) and differential scanning calorimetry, respectively. SEM results showed that electrospun composite fibres and yarns had good morphology with smooth surface and the MPCMs were randomly distributed on the composite yarn surface, inside the nanofibres and between the fibres in the yarn structure. Additionally, the SEM results suggested that the average diameters of nylon 6/MPCM nanofibres decreased from 0.23 ± 0.03 µm for neat nylon 6 to a minimum of 0.10 ± 0.02 µm for composite yarn containing 3 wt% MPCM. However, nylon 6/MPCM nanofibre yarn diameter displayed a complex behaviour; the average diameters of electrospun composite yarns increased upon addition of MPCM and reached a maximum value of 165.1 ± 5.11 µm for composite yarn containing 0.75 wt% MPCM, then decreased markedly. These changes in nylon 6/MPCM nanofibres and yarn diameters have been discussed in terms of electrospinning solution properties and twist parameter. The melting enthalpy values of MPCM in the composite nanofibre yarns increased as the content of MPCMs increased up to the highest content and higher than 80% of the heat storage capacity of MPCMs was retained after electrospinning.  相似文献   

18.
A facile synthesis of silver nanoparticles (with a diameter of 5 nm)/polymer hybrid films was studied through auto-reduction of silver nitrate (AgNO3) in poly(1H,1H-dihydroperfluorooctyl methacrylate-b-ethylene oxide) (poly(FOMA(10k)-b-EO(10k micellar thin films at ambient temperature. Silver nanoparticles well dispersed in the block copolymeric micellar films were prepared by rendering the silver precursor AgNO3 to interact favorably with PEO blocks. With annealing of the micellar film containing AgNO3 in supercritical CO2, the domains and continuous phase of the micellar film morphology were inverted and silver nanoparticles with a diameter of 10 nm were produced in PEO domains. The synthesis of silver nanoparticles in the copolymeric films was confirmed by transmission electron microscope and UV-visible spectrophotometric analysis.  相似文献   

19.
Three procedures (P) were applied to prepare silver nanoparticles on natural Ca-montmorillonite (MT). The intercalation of the montmorillonite with silver nitrate in aqueous solution (P1), the intercalation of the montmorillonite with silver nitrate in glycerol (P2) and the successive combination of both P1 and P2 methods resulted to P3 method. X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier Transform Infrared (FTIR) spectroscopy and the molecular modeling were employed to characterize silver nanoparticles and montmorillonite nanocomposite. The P1 produced MT-1 composite with 2.3 wt% Ag and the partially collapsed layered structure. Nanoparticles of silver larger than 20 nm with a lot of planar defects were randomly distributed on the MT-1 surface; nanoparticles smaller than 20 nm were oriented to the montmorillonite substrate. The MT-2 composite from P2 contained only 1 wt% of Ag. The molecular simulation model of MT-2 showed the interlayer space with the exchangeable cations and metallic silver atoms arrangement within the glycerol bilayer. The P3 produced composite MT-3 that contained 2.4 wt% Ag. The nanoparticles > 20 nm size had a well-defined geometry, very small nanoparticles were amorphous. The modeled structure showed the exchangeable cations, Ag+ and Ag0 located close to the silicate layers and monolayer of glycerol molecules in the interlayer space.  相似文献   

20.
In this study, a 'two-step' strategy of synthesizing nanoparticles-assembled Ag,S nanotubes with a diameter of less than 100 nm is developed. At first, the silver nanowires with uniform length and diameter were synthesized by polyol reduction method using PVP as a capping agent. Then, the resulting silver nanowires were exposed to the ambient atmosphere of laboratory, gradually sulfidized by sulfur-containing molecules in air, and eventually transformed into nanoparticles-assembled Ag2S nanotubes. The morphologic changes during the sulfidation process from Ag nanowires to Ag2S nanotubes were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is revealed that Ag2S nanoparticles are initially formed on the surface of Ag nanowire by sulfidation, and subsequently linked together into Ag,S nanotube. Quantitative analyses of energy dispersive X-ray spectra (EDS) and high-resolution transmission electron microscopy (HRTEM) show that the as-synthesized products are monoclinic alpha-Ag2S nanotubes. In addition, there is strong evidence that the polyvinylpyrrolidone (PVP) plays an important role as a soft template in the formation of Ag2S nanotubes. A new absorption peak at 573 nm appears in the optical absorption spectra when the Ag2S nanotubes are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号