共查询到20条相似文献,搜索用时 0 毫秒
1.
Vinayak A. DhumaleRajesh K. Gangwar Preeti V. Shah Vasant N. BhoraskarImtiaz S. Mulla Rishi B. Sharma 《Materials Letters》2011,65(11):1605-1607
The needle-like gold nanostructures were synthesized by using chloroauric acid (HAuCl4) as a metal precursor and sodium borohydride (NaBH4) as the reducing agent. These needle-like nanostructures of gold were irradiated with high energy electrons (E ~ 6 MeV, ? ~ 1012 e cm−2 s−1). The pre- and post-irradiated gold nanostructures were characterized by Scanning Electron Microscopy (SEM), UV-vis spectroscopy, X-ray Diffraction (XRD) and contact angle measurement (GBX-Model Digidrop) techniques. The results of the SEM revealed that after electron irradiation, the needle-like gold structures got fragmented into identical cube-shaped gold nanostructures, though of different sizes. The XRD analysis indicated that the average crystallite size of the gold nanostructures remained unchanged even after irradiation with high energy electrons. A glass surface showed hydrophilic behavior when coated with needle-like nanostructures and became ultra hydrophilic when coated with cube-shaped gold nanostructures. 相似文献
2.
Silver nanoparticles are notoriously susceptible to oxidation, yet gold nanoparticles coated in silver exhibit a unique electronic interaction that occurs at the interface of the two metals, leading to enhanced stability properties for the silver shell. In order to probe the phenomenon, the stability of gold nanoparticles coated by silver was studied in the presence of various chloride-containing electrolytes. It was found that a critical silver shell thickness of approximately 1 nm exists that cannot be oxidatively etched from the particle surface: this is in contrast to the observation of complete oxidative etching for monometallic silver nanoparticles. The results are discussed in terms of particle composition, structure and morphology before and after exposing the particles to the electrolytes. Raman analysis of the reporter molecule 3-amino-1,2,4-triazole-5-thiol adsorbed on the particle surface illustrates the feasibility of using gold coated by silver nanoparticle probes in sensing applications that require the presence of high levels of salt. The results provide insight into the manipulation of the electronic and stability properties for gold- and silver-based nanoparticles. 相似文献
3.
Studies on the growth and stability of silver nanoparticles synthesized by electron beam irradiation
Manjunatha Pattabi Rani M. Pattabi Ganesh Sanjeev 《Journal of Materials Science: Materials in Electronics》2009,20(12):1233-1238
Stable Ag nanoparticles have been synthesized by irradiating an aqueous solution of AgNO3 and Poly-vinyl alcohol (PVA) with 8 MeV electrons from a Microtron. The rate of formation of nanoparticles could be controlled by changing either the irradiation dosage or the relative concentration of the precursors. The size, shape, and the rate of formation of the nanoparticles depend on the final dosage, as well as the weight ratio of AgNO3 and PVA. The formation of Ag nanoparticles and their size were established through UV–Vis spectroscopy and Transmission electron microscopy (TEM) analysis, respectively. Increasing the irradiation dosage seem to favour the formation of polygonal nanostructures. Differential scanning calorimetry (DSC) measurements show that there exists a strong interaction between the PVA matrix and the Ag nanoparticles. 相似文献
4.
Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism. 相似文献
5.
Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed. 相似文献
6.
Four different gold nanostructures: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes, have been synthesized using a seed-mediated growth method by strategically varying the Ag(+) concentration in the reaction solution. Using X-ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy, we provide quantitative evidence that Ag underpotential deposition is responsible for stabilizing the various surface facets that enclose the above nanoparticles. Increasing concentrations of Ag(+) in the growth solution stabilize more open surface facets, and experimental values for Ag coverage on the surface of the particles fit well with a calculated monolayer coverage of Ag, as expected via underpotential deposition. 相似文献
7.
In a novel water-cyclohexane two-phase system, the aqueous formaldehyde is transferred to cyclohexane phase via reaction with dodecylamine to form reductive intermediates in cyclohexane; the intermediates are capable of reducing silver or gold ions in aqueous solution to form dodecylamine protected silver and gold nanoparticles in cyclohexane solution at room temperature. The prepared silver and gold nanoparticles are examined by transmission electron microscopy (TEM), UV-Visible spectroscopy (UV-vis), X-photon electron spectroscopy (XPS) and Fourier transfer infrared spectroscopy (FT-IR). It is found that these nanoparticles are monodisperse in size of less than 10 nm and have good stability in cyclohexane due to the adsorbed dodecylamine on nanoparticle surface. Moreover, the synthesis mechanism is revealed via gas chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR) analyses of the solutions during the preparation process. 相似文献
8.
Synthesis of silver nanoparticles using N 1, N 2-diphenylbenzamidine by microwave irradiation method
《Journal of Experimental Nanoscience》2013,8(4):251-256
Silver nanoparticles have been prepared under microwave irradiation from a solution of silver nitrate in the presence of N 1,N 2-diphenylbenzamidine (DPBA) or simply amidine without any stabilizing agent. Different morphologies of silver colloids with charming colors could be obtained using N 1,N 2-diphenylbenzamidine (DPBA). The structures of silver colloids were determined by TEM. UV-Vis spectroscopy was used to follow the reaction process and to characterize the optical properties of the resultant silver colloids. The influence of unconventional reducing agent on the morphology of silver was investigated. 相似文献
9.
A novel photochemical synthesis of size-controlled gold nanoparticles was reliably accomplished via both a direct reduction and a seeded-growth method at room temperature under the irradiation of fluorescent light. These methods utilized the intensity of fluorescent light that closely resembles daily sunlight (~100 mW cm(-2)). This effectively allowed for the formation of gold nanoparticles with tunable sizes simply by controlling the concentration of trisodium citrate and gold chloride. The broad band fluorescent light was found to be an efficient source for inducing the formation of gold nanoparticles at ambient conditions. The size distribution and absorption property of the resulting nanoparticles were thoroughly characterized by scanning/transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy and powder x-ray diffraction. This photochemical synthesis demonstrates, for the first time, the reliable preparation of gold nanoparticles at room temperature upon irradiation with fluorescent light. 相似文献
10.
Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. 总被引:5,自引:0,他引:5
Reported here is an efficient recognition of K+ by 15-crown-5 functionalized gold nanoparticles in aqueous matrix containing physiologically important cations, such as Li+, Cs+, NH4+, Mg2+, Ca2+, and excess amount of Na+. Upon exposure to K+, the colloidal solution changes from red to blue, in response to surface plasmon absorption of dispersed and aggregated nanoparticles. The concentration ranges of K+ detected in this study are 0.099-0.48 mM and 7.6 microM-0.14 mM, when concentrations of colloidal gold are 54.9 and 7.1 nM, respectively. Recognition of K+ and formation of the aggregates are proposed via a sandwich complex of 2:1 between 15-crown-5 moiety and K+. Also discussed is the possibility of a preorganized structure of 15-crown-5 at the water-organic interface for the efficient complexation with K+. 相似文献
11.
A seeding growth approach to the preparation of silver nanoparticles with a controllable size was developed. It contained a two-step reaction: the first step was gold seed clusters quickly generated by a chemical reaction using sodium borohydride as a reducing reagent; the second one was controllable silver nanoparticles were grown at the mild condition by using the mixed reducing reagents (hydroxylamine hydrochloride and sodium hydroxide) to form a buffer system. The gold core was beneficial for the crystalline of silver cations to form the nanoparticles and the buffer system which was composed of hydroxylamine hydrochloride and sodium hydroxide, and was helpful for controlling the size and shape of the as-prepared silver nanoparticles. These as-prepared nanoparticles were characterised by X-ray powder diffraction, UV-Vis spectroscopy (UV-Vis) and transmission electron microscopy along with energy dispersive X-ray spectroscopy. The results indicated that the obtained silver nanoparticles are highly crystallised with an average diameter around 10?nm. The content of gold seeds and the mild reaction rate controlled by the buffer system were considered to be key factors in the control of silver nanoparticles’ morphology and size. A possible mechanism of the silver nanoparticles formed was also proposed. 相似文献
12.
Zhen Li Chao Wu Yanyan Liu Tiebing Liu Zheng Jiao Minghong Wu 《Bulletin of Materials Science》2008,31(6):825-829
A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic
accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric
pressure without any kind of toxic reagents. The structure and morphology of prepared PbSe nanoparticles were analysed by
X-ray diffraction, transmission electron microscope and atomic force microscope. The results indicated that the obtained materials
were cubic nanocrystalline PbSe with an average grain size of 30 nm. The optical properties of prepared PbSe nanocrystalline
were characterized by using photoluminescence spectroscopy. The possible mechanism of the PbSe grain growth by electron beam
irradiation method is proposed. 相似文献
13.
P. Venkatesan 《Journal of Experimental Nanoscience》2014,9(3):293-298
Most of the hydrogen peroxide (H2O2) bio-sensors developed till date are based on enzymes and proteins causing them to have a limited lifetime. Moreover, complex procedures are followed for sensor fabrication. Therefore, an inorganic material-based sensor, with a simple design and longer shelf life is highly desirable. In this work, surfactant-metal (gold and silver) nanoparticles are prepared in aqueous solutions containing cetyltrimethylammonium bromide. The particle sizes of the metal nanoparticles obtained are characterised by UV–Vis, HRTEM, X-ray diffraction and FTIR; the average sizes of gold and silver nanoparticles are 8 and 10?±?0.2?nm, respectively. The nanoparticles are tested for H2O2 detection. The sensor is characterised and tested using samples from M to mM H2O2 range and a linear response is observed. Low-detection limits and high sensitivity are some of the advantages of this work. Same principle could be extended for the detection of other substrates as well. 相似文献
14.
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform‐infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X‐ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20–50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.Inspec keywords: gold, silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, cancer, cellular biophysics, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, scanning electron microscopyOther keywords: gold nanoparticle synthesis, silver nanoparticle synthesis, Mukia maderaspatna plant extract, anticancer activity, MCF 7 breast cancer cell line, biomolecule, phytochemical analysis, size 20 nm to 50 nm, healt hcare sector, pharmaceutical sector, nanomaterial, dual staining assay, MTT assay, scanning electron microscopy, energy dispersive X‐ray spectrocopy, high resolution transmission electron microscopy, Fourier transform‐infrared spectroscopy, instrumental technique, ultraviolet‐visible spectroscopy, metal nanoparticle formation, metal ion solution 相似文献
15.
金纳米粒子以它独特的光学、电学和催化性质以及在纳米级电子线路中的应用潜力,受到人们越来越多的关注.本文主要评述了金纳米粒子的合成方法和自组装技术,即对各种制备方法和自组装的特点、纳米粒子的生长机理和自组装机理进行了介绍.展望了金纳米材料未来的研究方向和发展趋势. 相似文献
16.
We report the studies of ultrafast electron nanocrystallography on size-selected Au nanoparticles (2-20 nm) supported on a molecular interface. Reversible surface melting, melting, and recrystallization were investigated with dynamical full-profile radial distribution functions determined with subpicosecond and picometer accuracies. In an ultrafast photoinduced melting, the nanoparticles are driven to a nonequilibrium transformation, characterized by the initial lattice deformations, nonequilibrium electron-phonon coupling, and, upon melting, the collective bonding and debonding, transforming nanocrystals into shelled nanoliquids. The displasive structural excitation at premelting and the coherent transformation with crystal/liquid coexistence during photomelting differ from the reciprocal behavior of recrystallization, where a hot lattice forms from liquid and then thermally contracts. The degree of structural change and the thermodynamics of melting are found to depend on the size of nanoparticle. 相似文献
17.
Catherine Ryan Emma Alcock Finbarr Buttimer Michael Schmidt David Clarke Martyn Pemble 《Science and Technology of Advanced Materials》2013,14(1):528-540
AbstractWe present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required. 相似文献
18.
Silver particles of 70 +/- 10 nm mean diameter were coated with uniform layers of amorphous titania by the hydrolysis and polycondensation process using titanium(IV) n-butoxide in aqueous solution. Because of the large dielectric function of titania, a shift to the longer wavelengths was observed for the plasmon resonance maximum of coated silver nanoparticles. By changing the alkoxide to particles ratio in the reaction mixture, thickness ranging from 5 to 20 nm was obtained. Hydrothermal treatment performed on coated particles at 350 degrees C for 4 h converted amorphous titania to the anatase crystalline form. The anatase form was confirmed by X-ray powder diffraction. More red shift of the plasmon resonance was observed for the hydrothermally treated samples compared with the particles coated with amorphous titania. 相似文献
19.
Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation 总被引:1,自引:0,他引:1
An efficient and rapid method for the preparation of gold nanoparticles (AuNPs) within a few minutes has been developed by direct microwave irradiation of HAuCl4 and chitosan mixed solution in one pot. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of AuNPs. The obtained AuNPs have different shapes, such as the spherical nanoparticles, triangular nanoplates and nanorods, which were characterized by ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR). Additionally, the results showed that microwave power could affect the required time for preparing the AuNPs arising from the distinction of heating rate, and long irradiation time was favorable for complete reduction of HAuCl4 when a low microwave power was applied. 相似文献
20.
Reddy AS Chen CY Chen CC Jean JS Chen HR Tseng MJ Fan CW Wang JC 《Journal of nanoscience and nanotechnology》2010,10(10):6567-6574
Biological synthesis of gold and silver nanoparticles was carried out using the bacteria Bacillus subtilis. The reduction processes of chloroaurate and silver ions by B. subtilis were found to be different. Gold nanoparticles were synthesized both intra- and extracellularly, while silver nanoparticles were exclusively formed extracellularly. The gold nanoparticles were formed after 1 day of addition of chloroaurate ions, while the silver nanoparticles were formed after 7 days. The nanoparticles were characterized by X-ray diffraction, UV-vis spectra and transmission electron spectroscopy. X-ray diffraction revealed the formation of face-centered cubic (fcc) crystalline gold nanoparticles in the supernatant, broth solution and bacterial pellet. Silver nanoparticles also exhibited diffraction peaks corresponding to fcc metallic silver. UV-vis spectra showed surface plasmon vibrations for gold and silver nanoparticles centered at 530 and 456 nm, respectively. TEM micrographs depicted the formation of gold nanoparticles intra- and extracellularly, which had an average size of 7.6 +/- 1.8 and 7.3 +/- 2.3 nm, respectively, while silver nanoparticles were exclusively formed extracellularly, with an average size of 6.1 +/- 1.6 nm. The bacterial proteins were analyzed by sodium dodecyl sulfonate-polyacrylamide electrophoresis (SDS-PAGE) before and after the addition of metal ion solutions. We believe that proteins of a molecular weight between 25 and 66 kDa could be responsible for chloroaurate ions reduction, while the formation of silver nanoparticles can be attributed to proteins of a molecular weight between 66 and 116 kDa. We also believe that the nanoparticles were stabilized by the surface-active molecules i.e., surfactin or other biomolecules released into the solution by B. subtilis. 相似文献