共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim S Pal S Ajayan PM Borca-Tasciuc T Koratkar N 《Journal of nanoscience and nanotechnology》2008,8(1):416-419
We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices. 相似文献
2.
Carbon nanotube (CNT) films have been used as counter electrodes in natural dye-sensitized (anthocyanin-sensitized) solar cells to improve the cell performance. Compared with conventional cells using natural dye electrolytes and platinum as the counter electrodes, cells with a single-walled nanotube (SWNT) film counter electrode show comparable conversion efficiency, which is attributed to the increase in short circuit current density due to the high conductivity of the SWNT film. 相似文献
3.
4.
Jessica E. Weber Shreekumar Pillai Manoj Kumar Ram Ashok Kumar Shree R. Singh 《Materials science & engineering. C, Materials for biological applications》2011,31(5):821-825
Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor. 相似文献
5.
Hiroki Ago Ei-ichiro Uchimura Takeshi Saito Satoshi Ohshima Naoki Ishigami Masaharu Tsuji Motoo Yumura Masato Miyake 《Materials Letters》2006,60(29-30):3851-3854
We demonstrate that an aligned multi-walled carbon nanotube array can immobilize Hela cells through insertion of the nanotube tips into the cell. The cells were immobilized by pressing onto the nanotube array with the aid of mild centrifugal force. The nanotube array fixed a much larger number of cells compared with the flat surface of a Si substrate, indicating strong binding force of the aligned nanotubes toward the cell. This is the first example of mechanical cell immobilization, which offers future applications of the nanotube array for cellular biology, tissue engineering, and biomolecular devices. 相似文献
6.
We present a novel prototype neural interface using vertically aligned multiwalled carbon nanotube (CNT) pillars as microelectrodes. Functionalized hydrophilic CNT microelectrodes offer a high charge injection limit (1-1.6 mC/cm2) without faradic reactions. The first repeated in vitro stimulation of hippocampal neurons with CNT electrodes is demonstrated. These results suggest that CNTs are capable of providing far safer and more efficacious solutions for neural prostheses than previous metal electrode approaches. 相似文献
7.
Yang Z Chen T He R Guan G Li H Qiu L Peng H 《Advanced materials (Deerfield Beach, Fla.)》2011,23(45):5436-5439
Aligned carbon nanotube sheets are developed as a new family of electrodes to fabricate dye-sensitized solar cells. The energy conversion efficiency of the resulting cell is higher than the randomly dispersed carbon nanotube film and comparable with the platinum. Novel and flexible solar cells can be easily made from such carbon nanotube sheets with high potentials. 相似文献
8.
《Journal of Experimental Nanoscience》2013,8(7-8):947-956
The anodic oxidation of sulphadiazine (SD) was investigated at a glassy carbon electrode modified by multi-walled carbon nanotube (MWCNT–GCE), using cyclic voltammetry and chronoamperometry. The results indicate that MWCNT-modified GCEs show an efficient and selective electrocatalytic activity towards the anodic oxidation of SD among biologically important compounds in buffered solutions at pH?=?7. It was found that oxidation of SD at the surface of MWCNT–GCE occurs at a potential less positive than that of unmodified GCE (about 100?mV). The diffusion coefficient of SD was also estimated using chronoamperometry. The kinetic parameters such as the electron transfer coefficient between SD and modified electrode, α, and the charge transfer rate constant, ks , for oxidation of SD at the MWCNT–GCE surface were determined according to the Laviron procedure. The dissociation constants of oxidised and reduced acid–base species of SD can be obtained from the E 1/2 versus pH curves. The linear dependence of the peak current on the concentration was observed in the range 10–2000?µmol?L?1 with a detection limit of 7.1?µmol?L?1. The method was also applied to determinate the SD in human blood plasma and urine samples. 相似文献
9.
In this paper, we report a facile method to fabricate silver nanowire array electrodes (SNAE) with ultra-high detection sensitivity to chloropropanol in the aqueous solution. Silver nanowire arrays were assembled in conventional anodic alumina membranes (AAM) by electrochemical deposition. Subsequently, silver nanowire arrays with an aspect ratio of 5 approximately 6 were deposited on the bottom of AAM. After a complete removal of the AAM , the grown arrays were used as working electrodes in a three-electrode cell. The electrochemical activity of SNAE was tested in the 0.1 mol/L NaClO4 aqueous solution using chloropropanol as analyte by a cyclic voltammetry method. The results show that SNAE display a distinct reduction peak at -1.011 V (vs. SCE) for chloropropanol and the linear dependencies of current on chloropropanol concentration were obtained within the concentration range 1.8 x 10(-7) approximately 2 x 10(-6) mol/L. The detection limit of chloropropanol was 10(-9) mol/L, which is significantly lower than that of their bulk counterparts. In short, SNAE show great potential in the determination of trace chloropropanol. 相似文献
10.
Gao YB Wang Y Wang JY Xu SY Wei XL Wang MS Li Y Peng LM 《Journal of nanoscience and nanotechnology》2010,10(8):4985-4991
We report here a method for measurement of thermoelectric power of quasi-one dimensional nano-materials with a simple platform, where individual nanomaterial is assembled with nano-probes in a scanning electron microscope. This approach allows repeated manipulation and thermoelectric measurement of the same loaded nanosample with adjustable number of individual nanotubes or nanowires. It also allows assembly of multiple samples on one measurement stage. For multi-walled carbon nanotube bundles, we have observed a weak trend that, when the number of individual tubes in a bundle varies from ten millions to around a hundred thousand, the thermoelectric power almost remains at around 10 microV/K. When the tube number in the bundle is further reduced, the up-limit of the thermoelectric power gradually increases to a value near 20 microV/K. 相似文献
11.
The spatial and temporal distributions of an extensive number of diffusible molecules drive a variety of complex functions. These molecular distributions often possess length scales on the order of a millimeter or less; therefore, microfluidic devices have become a powerful tool to study the effects of these molecular distributions in both chemical and biological systems. Although there exist a number of studies utilizing microdevices for the creation of molecular gradients, there are few, if any, studies focusing on the measurement of spatial and temporal distributions of molecular species created within the study system itself. Here we present a microfluidic device capable of sampling multiple chemical messengers in a spatiotemporally resolved manner. This device operates through spatial segregation of nanoliter-sized volumes of liquid from a primary sample reservoir into a series of analysis microchannels, where fluid pumping is accomplished via a system of passive microfluidic pumps. Subsequent chemical analysis within each microchannel, achieved via optical or bioanalytical methods, yields quantitative data on the spatial and temporal information for any analytes of interest existing within the sample reservoir. These techniques provide a simple, cost-effective route to measure the spatiotemporal distributions of molecular analytes, where the system can be tailored to study both chemical and biological systems. 相似文献
12.
13.
A biosensor for arsenite has been developed using molybdenum-containing arsenite oxidase, prepared from the chemolithoautotroph NT-26 that oxidizes arsenite to arsenate. The enzyme was galvanostatically deposited for 10 min at 10 microA onto the active surface of a multiwalled carbon nanotube modified glassy carbon electrode. The resulting biosensor enabled direct electron transfer, i.e., effecting reduction and then reoxidization of the enzyme without an artificial electron-transfer mediator. Arsenite was detected within 10 s at an applied potential of 0.3 V with linearity up to 500 ppb and a detection limit of 1 ppb. The biosensor exhibited excellent reproducibility, 2% at 95% confidence interval for 12 repeated analyses of 25 ppb arsenite. Copper, a severe interfering species commonly found in groundwater, did not interfere, and the biosensor was applicable for repeated analysis of spiked arsenite in tap water, river water, and a commercial mineral water. 相似文献
14.
15.
Peixu Li Shanshan Wang Yi Jia Zhen Li Chunyan Ji Luhui Zhang Hongbian Li Enzheng Shi Zuqiang Bian Chunhui Huang Jinquan Wei Kunlin Wang Hongwei Zhu Dehai Wu Anyuan Cao 《Nano Research》2011,4(10):979-986
We report the fabrication of CuI-Si heterojunction solar cells with carbon nanotubes (CNTs) as a transparent electrode. A flexible CNT network was transferred onto the top of a polycrystalline CuI layer, making a conformal coating with good contact with the underlying CuI. The solar cells showed power conversion efficiencies in the range of 6% to 10.5%, while the efficiency degradation was less than 10% after the device was stored in air for 8 days. Compared with conventional rigid electrodes such as indium tin oxide (ITO) glass, the flexibility of the CNT films ensures better contact with the active layers and removes the need for press-contact electrodes. Degraded cells can recover their original performance by acid doping of the CNT electrode. Our results suggest that CNT films are suitable electrical contacts for rough materials and structures with an uneven surface. 相似文献
16.
We have performed impedance spectroscopy of dense carbon nanotube (CNT) bundles in the broad frequency range from 10 MHz to 67 GHz. Dense CNT bundles were formed on sharp tips from aqueous suspension by ac dielectrophoresis and incorporated into on-wafer test structures. The frequency response of the bundles can be fit to a model with frequency-independent elements in the entire frequency range up to 67 GHz strongly suggesting that CNT properties do not depend on the frequency throughout the whole frequency range. The measurements at microwave frequencies allowed separate characterization of the bundle/metal electrode contacts and the bundle bulk. Effects of different CNT fabrication and suspension processing routes on bundle characteristics were identified. We have also made a preliminary estimation of the average inductance per current carrying shell in the bundles. For good quality nanotube bundles, the inductance has been found to fall within the range from approximately 3.5 to 40 nH/microm. With decreasing nanotube quality, the implemented estimation procedure yields higher values with a large uncertainty. Systematic measurements of devices with individual nanotubes are required to provide more accurate data. 相似文献
17.
Guo ZP Ng SH Wang JZ Huang ZG Liu HK Too CO Wallace GG 《Journal of nanoscience and nanotechnology》2006,6(3):713-718
Single-walled carbon nanotube (SWNT) papers were successfully prepared by dispersing SWNTs in Triton X-100 solution, then filtered by PVDF membrane (0.22 microm pore size). The electrochemical behavior and the reversible hydrogen storage capacity of single-walled carbon nanotube (SWNT) papers have been investigated in alkaline electrolytic solutions (6 N KOH) by cyclic voltammetry, linear micropolarization, and constant current charge/discharge measurements. The effect of thickness and the addition of carbon black on hydrogen adsorption/desorption were also investigated. It was found that the electrochemical charge-discharge mechanism occurring in SWNT paper electrodes is somewhere between that of carbon nanotubes (physical process) and that of metal hydride electrodes (chemical process), and consists of a charge-transfer reaction (Reduction/Oxidation) and a diffusion step (Diffusion). 相似文献
18.
Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes 总被引:1,自引:0,他引:1
Valentini F Amine A Orlanducci S Terranova ML Palleschi G 《Analytical chemistry》2003,75(20):5413-5421
Paste electrodes have been constructed using single-wall carbon nanotubes mixed with mineral oil. The electrochemical behavior of such electrodes prepared with different percentages of carbon nanotubes has been compared with that of graphite paste electrodes and evaluated with respect to the electrochemistry of ferricyanide with cyclic voltammetry. Carbon nanotubes were purified by a treatment with concentrated nitric acid, then oxidized in air. In addition, electrochemical pretreatments were carried out to increase the selectivity of carbon nanotube electrodes. Performances of carbon nanotube paste and carbon paste electrodes were evaluated by studying such parameters as current peak, deltaEp, anodic and cathodic current ratio, and charge density toward several different electroactive molecules. Data interpretation based on the carbon nanotubes and carbon surface area is presented. Carbon nanotube paste and carbon paste electrodes were tested as H2O2 and NADH probes, and several analytical parameters were evaluated. The oxidative behavior of dopamine was examined at these electrodes. The two-electron oxidation of dopamine to dopaminequinone showed an excellent reversibility in cyclic voltammetry that was significantly better than that observed at carbon paste electrodes. 相似文献
19.
A novel parylene-embedded carbon nanotube nanoelectrode array is presented for use as an electrochemical detector working electrode material. The fabrication process is compatible with standard microfluidic and other MEMS processing without requiring chemical mechanical polishing. Electrochemical studies of the nanoelectrodes showed that they perform comparably to platinum. Electrochemical pretreatment for short periods of time was found to further improve performance as measured by cathodic and anodic peak separation of K(3)Fe(CN)(6). A lower detection limit below 0.1?μM was measured and with further fabrication improvements detection limits between 100?pM and 10?nM are possible. This makes the nanoelectrode arrays particularly suitable for trace electrochemical analysis. 相似文献
20.
The electrochemical behaviors of nitrobenzene at a pyrolytic graphite electrode modified with carbon nanotubes (CNTs) were studied using cyclic voltammetry and constant-potential electrolysis technique, and the CNT-modified electrode was characterized with Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) measurements. A CNT-modified packed-bed flow reactor was also constructed for electrocatalytic reduction of nitrobenzene. The results showed that CNTs exhibited high activity for nitrobenzene reduction to aniline and the electrochemical reduction of nitrobenzene at CNT-modified electrode followed the pathway of nitrobenzene-->phenylhydroxylamine-->aniline. CNTs had been functionalized with profuse carboxylic group and other oxygen-containing groups, became open with some lacuna on the wall, and were distributed symmetrically on the electrode with forming a three-dimensional layer, resulting in the high catalytic-activity for nitrobenzene reduction to aniline. The removal of nitrobenzene was over 95% with electrolysis for 50 min at -1.20 V in pH 5 solution using the CNT-modified packed-bed flow reactor, and no other product was obtained except aniline. The removal of nitrobenzene was over 95% with electrolysis for 80 min at -1.20 V in pH 7 solution and was 87% with electrolysis for 120 min in pH 9 solution. A little phenylhydroxylamine besides aniline was obtained during the initial electrolysis stage, and then all reduced to aniline. The average current efficiency at pH 5, 7 and 9 was 46, 51 and 63%, respectively. The electrolysis products were mineralized easily through aerobiotic biodegradation. 相似文献