首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
借助Marc商用软件,采用弹塑性大变形热力耦合有限元法,对0.19%~0.20%C钢68 mm薄板坯CSP 6道次连轧过程的温度以及轧制力进行模拟,分析了轧制过程中各道次轧件温度和轧制力的分布与变化规律。结果表明,在轧件变形过程中,接触热传导和变形热是影响温度变化的主要因素,二者的综合作用决定了轧件的温度变化规律;轧制结束后,轧件从表面向内在一定厚度范围内出现明显的温度梯度,超过该临界厚度值,轧件温度基本保持不变。在轧制稳定阶段,轧制力在微小范围内波动。  相似文献   

2.
采用动态显式有限元法对中厚板轧制过程进行了分析.分析了轧制过程稳定阶段接触区中厚板单元数、轧辊单元尺寸以及中厚板初始速度选择对有限元分析计算结果的影响,得出了合理的轧制过程有限元模拟参数,并对某中厚板厂15道次轧制过程轧制力变化规律进行了分析,稳定阶段轧制力计算结果与实测结果非常接近.该结果对中厚板轧制过程模拟具有一定的参考意义.  相似文献   

3.
借助Marc商用软件 ,采用弹塑性大变形热力耦合有限元法 ,对薄板坯CSP生产线Q2 35钢 15 0 4mm× 4 2mm轧件第 2道次的热轧过程进行轧件温度场分布以及轧制力能参数变化的模拟和分析。结果表明 ,从轧件入口到轧件出口 ,沿轧制方向等效应变逐渐增大 ,最大值为 0 5 7;模拟得到的轧制力为 2 3380kN ,现场轧机记录轧制力为 2 35 37kN ,预测误差为 0 6 7% ,所采用的有限元模拟方法能较好地反映金属的实际变形。  相似文献   

4.
杨正波  陈志平 《梅山科技》2003,(4):26-27,38
应用MARC/autoforge商用有限元软件,对轧辊的轧制变形过程进行热力耦合模拟。研究了模拟过程中的轧辊的弹性变形、轧辊内的应力分布及轧辊的危险断面的位置,分析计算说明,采用有限元模拟的方法可以较好地反映金属的实际变形情况。  相似文献   

5.
H型钢热轧轧制力的数值模拟   总被引:7,自引:0,他引:7  
应力热力耦合大变形有限元方法,模拟了H型钢的热轧变形过程,给出了轧制力的大小及其分布方式,数值模拟结果表明:H远见 腹板与 外表面单位轧制力的最大值一般均出现在出品截面附近,目前比后大得多。此外,模拟计算值与实测值比较接近,从而证明了本模拟计算方法的正确性。  相似文献   

6.
曾犇  张恒华 《宽厚板》2009,15(6):1-4
轧制力是轧制过程中重要的技术参数之一。本文应用DEFORM-3D软件建立轧制模型,研究了轧制温度、轧辊转速和压下率对钢板轧制力的影响。随后通过比较第一道次模拟轧制力与钢厂实测轧制力,结果表明:在三种钢板材料中,DEFORM-3D软件模拟的轧制力均与钢厂实测轧制力较吻合,误差都在10%以内。该模拟为钢厂轧制工艺参数的制定提供了重要的参考价值。  相似文献   

7.
板带精轧过程轧制力的三维弹塑性有限元分析   总被引:8,自引:0,他引:8  
利用ANSYS/LS-DYNA三维弹塑性轧制模型,对板带精轧过程不同温度、不同板带厚度和压下程度的轧制力进行了有限元模拟,并对有限元方法计算的轧制力值和理论计算值进行了比较,二者的相对误差在11%以内。  相似文献   

8.
针对热轧U型钢板桩(SY390BZ/%:0.23C、1.60Mn、0.44Si、0.18V,0.18Ti、0.05Nb)轧制过程中产生翘曲缺陷,采用有限元分析软件ABAQUS显式动力学算法,结合实验室试验测量参数,对钢板桩的精轧过程进行了仿真计算。在仿真计算的基础上,根据轧制平面内节点位移矢量分布情况,分析了轧件横向和纵向断面内金属流动规律。模拟结果显示轧件断面在孔型轧制的压下方向上存在零位移线,表明U型钢板桩轧制中坯料翼缘和锁口处在轧制压力方向上轧件内金属流动存在位移中性面,并伴有轧件锁口凸缘处金属流动过快,腹板处金属流动较慢而产生翘曲的现象。  相似文献   

9.
在弹塑性有限变形理论的基础上,应用大型通用有限元分析软件ANSYS对平三角孔型中轧件的变形进行了模拟.该分析软件是基于Newton-Raphson法的迭代过程,用一系列近似值逐渐收敛于实际的非线性解.为验证有限元模拟的准确性,还应用视塑性方法进行了实验研究.为保证实验精度,采用数控技术和激光技术刻制网格,并采用体视显微镜放大网格,以及采用计算机图像处理系统自动采集数据.计算结果与实验符合较好.  相似文献   

10.
 为了满足板材轧制过程在线控制快速计算的要求,首先建立了板材轧制平面应变刚塑性有限元能量泛函。其次,通过合理的简化建立了只考虑变形区的快速有限元模型,且对有限元建模的关键问题包括中性点、第一类速度奇异点和刚性区等进行了处理。最后,开发了板材轧制快速计算有限元程序,并且利用现场轧制数据测试了快速有限元程序的计算速度和精度,结果表明计算速度和精度满足在线快速计算的要求。  相似文献   

11.
钢轨万能轧制过程的三维弹塑性有限元模拟研究   总被引:3,自引:0,他引:3  
以冷轧铅为模型 ,用MARC有限元软件对钢轨的轧制过程进行三维弹塑性模拟 ,并分析轧制状态下钢轨内部应力的分布以及轧后残余应力分布 ,为提高钢轨质量 ,适应国内高速铁路的建设奠定了理论基础。  相似文献   

12.
中厚板轧制过程中力能参数的预报模型   总被引:4,自引:0,他引:4  
根据给定的热力耦合热边界条件的计算结果 ,建立了轧制中厚板的二维和三维有限元模型并模拟计算了 (2 30 0~ 2 6 30 )mm× (9~ 72 )mm板坯压下量 7~ 19mm ,轧制速度 3 16~ 4 37m/s ,轧制温度 92 9~10 33℃的轧制力 (2 6 6 0 0~ 5 0 0 0 0kN)和轧制力矩 (780~ 32 0 0kN·m)。结果表明 ,轧制力计算值和测量值的相对偏差为 1 30 %~ 9 37% ,轧制力矩的相对偏差为 3 6 9%~ 9 75 %。二维模拟和三维模拟的结果基本一致。  相似文献   

13.
采用有限元分析软件DEFORM,对石钢GCr15轴承钢300mm×220mm铸坯650轧机箱形孔轧制1-4道次轧件内部应力进行模拟,分析了侧壁斜度和轧制温度对应力的影响。结果表明1/[(H+h)/2]最小的第1道次不利于改善钢材的内部质量;侧壁倾角越小,宽度方向的拉应力(σ)越小;1050℃轧制时各点断裂因子小于1100℃各点断裂因子。  相似文献   

14.
采用大变形弹性有限元法,借助MSC.Marc有限元软件,建立了昆明钢铁公司双机架紧凑式可逆炉卷轧机轧制过程的二维模型,对C45(0.43%~0.49%C)钢的2 mm×1200 mm带钢轧制平直度进行模拟。对带钢沿宽度方向上的应力分布进行三维模拟,得出上、下工作辊的辊径比对带钢平直度的影响。结果表明,当辊径比为420/418.5时,带钢的平直度最佳。  相似文献   

15.
董洁  吴成  庞玉华  刘晓燕 《特殊钢》2008,29(3):36-38
应用MARC软件对304不锈钢(%:17~19Cr、8~11Ni)/Q235碳钢(%:0.14~0.22C)复合板前5道次往复热轧过程(变形率%:3.4、10.4、25.0、37.8、49.4)进行有限元模拟,得出Q235钢和304不锈钢在界面处的应力和应变分布。模拟结果表明,在两种材料都进入塑性变形状态时,界面处法向应力值达到或超过304不锈钢界面温度下的变形抗力,且两种材料应变平均值的差值≤0.01时即可复合,该模拟结果与生产试验结果一致;这说明使用小的单道次变形率,大的累积变形率可获得结合良好的碳钢/不锈钢复合板。  相似文献   

16.
椭圆孔型中轧件变形的三维有限元分析   总被引:5,自引:0,他引:5  
阎军  鹿守理 《特殊钢》1999,20(4):22-24
采用商用有限元软件MARC/Autoforge,用大变形弹塑性有限元力耦合的方法分析了不同形状的坯料在椭圆孔型中的变形情况,重点研究了轧件变形的不均匀性、孔形的变形能力、金属的流动规律的轧制力能参数的大小。  相似文献   

17.
用ANSYS/LS-DYNA软件对U75V重轨钢280 mm×380 mm铸坯开坯轧制重轨过程进行数值模拟,优化切深孔C孔的孔型,并分析优化前后开坯轧制重轧横截面的应力分布。结果表明,经孔型优化,降低了轧制过程重轨的等效应力,中轴线等效应力状态得到改善,原始孔型应力波动范围为9~44 MPa,优化孔型为8~30 MPa,中轴线纵向最大应力由原来的41.4 MPa降至21.1 MPa。  相似文献   

18.
肖玉  洪慧平  冯富春 《特殊钢》2014,35(2):16-19
通过对棒材热连轧过程的分析,建立了20CrMnTi钢800~1150℃,变形量0~0.8,应变速率0~3 s-1的Hensel-Spittel流变应力模型;利用LARSTRAN/SHAPE有限元软件模拟了20CrMnTi从200 mm×200 mm的方坯经8道次连轧为Φ90 mm圆棒的过程,分析了轧件在圆弧侧壁的圆孔型和直线侧壁的圆孔型下轧制过程中的应力场、应变场、温度场和轧制力及力矩的变化情况。模拟结果表明,轧件圆角部位等效应力、等效应变较大且温度较低,容易出现轧制质量缺陷;圆弧侧壁的圆孔型轧制圆钢时的精度略高于直线侧壁的圆孔型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号