首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation ability of some linear crown ether‐siloxane copolymers of ester or amide type with cations as K+ and NH4+ was investigated spectrophotometrically in order to select the polysiloxane receptors that achieve good ion transport ability by bulk liquid membrane systems. The transport properties of the potassium picrate through a liquid membrane using siloxane‐crown ether polyamide as carrier were discussed.  相似文献   

2.
We studied the gas permeation properties of poly(ether ether ketone) (PEEK) and compared it with two other polymers commonly used in the construction of semiconductor microenvironments, polycarbonate (PC), and poly(ether imide) (PEI). The PEEK specimens consisted of extruded films as well as compression‐ and injection‐molded specimens. The compression‐molded specimens were prepared to achieve the highest crystallinity. Injection‐molded disks, representing products, were milled to a prescribed thickness. Permeation, diffusion, and solubility coefficients were measured on these various PEEK specimens for hydrogen, nitrogen, and oxygen gases. It was found that PEEK generally has better permeation resistance than PC or PEI; showing up to five times lower permeation rates than PC or PEI, depending on grade, crystallinity, and gas. The superior permeation resistance of injection‐molded or extruded PEEK, when compared with similarly processed PC or PEI, comes from its crystallinity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Dimethyl sulfide appears to be present everywhere in the surface ocean, is readily transferred into the marine atmosphere, and may account for about 30% of the natural component of the overall sulfur budget in the atmosphere. To investigate the apparent discrepancies between measured DMS fluxes, and theoretical predictions, we have examined the transport of DMS across the marine-atmosphere interface. An analysis of vertical flux was performed with a two-film model for the transport of DMS across the marine-atmosphere interface with chemical reactions. The photosensitized oxidation of DMS, its reaction with hydrogen peroxide in the aqueous film, and reactions with nitrate and hydroxyl radicals in the gas film have negligible effect on the DMS flux to the marine atmosphere. However, the flux of DMS into the atmosphere is most sensitive to the liquid-film thickness but not to changes in temperature and gas-film thickness. Model calculations showed that if the liquid-film thickness increases from 35 μm (turbulent sea conditions) to 200 μm (calm sea conditions), the flux of DMS reduces from 290 to 55 μg S m-2 day-1 at an ocean temperature of 15°C for a constant gas-film thickness of 0.3 cm  相似文献   

4.
To obtain high-performance gas separation membranes and realize high-efficiency separation and recovery of CO2/N2 in flue gas, the amino-rich semi-interpenetrating network blend membranes were prepared by in-situ crosslinking reaction, which provided CO2 transport channels and affinity sites. Sulfonated poly(ether ether ketone) (SPEEK) and polysuccinimide (PSI) were used as raw materials, and hexamethylenediamine was crosslinking agent. The structure of the blend membranes was characterized by Fourier-transform infrared spectroscopy. The effects of water content, PSI dosage and feed gas pressure on the gas separation performance were studied, and its gas separation performance and the long-time stability were investigated under mixed gas conditions. The results showed that SPEEK and PSI have a good compatibility, and there is a strong interaction between them, which exhibited the semi-interpenetrating network microstructure in the membranes. When the PSI loading is 60%(mass), the CO2 permeability of pure gas and mixed gas are 652 and 601 Barrer, respectively, and the corresponding CO2/N2 selectivity is 67.6 and 60.3, which is better than that in pristine SPEEK membrane, surpassing 2008 Robeson upper bound. The CO2 permeability and CO2/N2 selectivity are still stable after 360 h durability test of SPEEK/PSI-60 blend membrane. This is mainly due to the formation of the amino-rich semi-interpenetrating network microstructure between SPEEK and PSI, which not only provides CO2 facilitated transport carriers, but also enhances the water retention performance of the blend membranes and forms a large number of CO2 transport water channels.  相似文献   

5.
高殷  王永洪  张新儒  李晋平  凌军 《化工学报》2020,71(12):5813-5820
为了获得高性能的气体分离膜,实现烟道气中CO2/N2高效分离回收,以磺化聚醚醚酮(SPEEK)和聚琥珀酰亚胺(PSI)为原料,己二胺为交联剂,原位交联反应制备富含氨基的半互穿网络共混膜,在膜内构建CO2传递通道和亲和位点,并采用红外光谱对共混膜的结构进行表征。研究水含量、PSI用量和进料气压力对膜气体分离性能的影响,在混合气条件下考察其气体分离性能和长时间运行稳定性。研究结果表明:SPEEK与PSI两相界面相容性较好,它们之间存在较强的相互作用,且呈半互穿网络微结构;PSI含量为60%(质量)时,纯气和混合气条件下CO2渗透性分别为652和601 Barrer,对应的CO2/N2选择性为67.6和60.3,优于纯SPEEK膜,且超过2008年的Robeson上限;共混膜运行360 h后,CO2渗透性和CO2/N2选择性仍然稳定。这主要是因为SPEEK与PSI形成富含氨基的半互穿网络微结构后,一方面提供了CO2促进传递载体;另一方面,增强了共混膜的保水性能,形成大量CO2传递水通道。  相似文献   

6.
The effects of surface morphology on the field emission of non-doped polycrystalline diamond films with thicknesses ranging from 5 to 55 μm were studied. Diamond films grown by a microwave-plasma chemical vapor deposition technique had both the diamond and non-diamond components with pyramidal and angular crystalline structures. Although the average crystallite size increased with increasing the film thickness (d), the volume fraction of the non-diamond components in the films was insensitive to the film thickness. However, the turn-on electric field, FT, (defined as the low-end electric field to emit electrons) showed a U-shape dependence on the film thickness. This U-shape dependence was explained by a model in which the emission current was controlled by Fowler–Norheim tunneling of electrons at surface of the pyramids when d was thinner than 20 μm and by carrier transport in the polycrystalline diamond film when d was thicker than 20 μm. The lowest field of 4 V/μm was obtained in the film with 20 μm thick.  相似文献   

7.
M. Brillhart  J. Botsis 《Polymer》1992,33(24):5225-5232
Experimental results on the effects of specimen thickness and environmental temperatures on fatigue fracture behaviour of poly(ether ether ketone) (PEEK) are reported. Low cycle fatigue experiments are conducted on injection moulded single-edge notched specimens of 1.57, 2.70 and 5.42 mm in thickness at ambient temperatures, and on specimens 2.70 mm thick at environmental temperatures of 39, 50, 63, 75 and 100°C. In all the thickness experiments and in the experiments with temperatures of 39 and 50°C, the crack tip profile is initially round. At long crack lengths the crack tip profile changes to a triangular shape. When the test temperature is 63, 75 and 100°C, the crack tip remains round throughout the fracture process. The crack tip angle is primarily dependent upon the test temperature. Examinations of the fracture surfaces and transverse sections indicate that in the thickest specimen, relatively rough fracture surfaces are observed and a few discontinuities (crazes or cracks) underneath the main crack path. Thus, crack propagates in a ‘brittle’ manner. In all other experiments both ‘brittle’ and ‘ductile’ modes of fracture are observed. The point of transition from ‘brittle’ to ‘ductile’ fracture is dependent upon the specimen thickness and test temperature. Fatigue striations are seen throughout the fracture surfaces. Correlation of the striations and the number of cycles indicates a one-cycle crack growth mode. Hysteretic losses during fatigue crack growth are negligible until a few cycles prior to unstable fracture. Crack opening displacements are independent of the specimen thickness and increase with rise in temperature. When crack growth rates are correlated with the elastic energy release rate, they are independent of specimen thickness and increase with increase in temperature.  相似文献   

8.
The chemical potential of an extended meniscus on an inclined flat plate is a function of its temperature, curvature, film thickness and height above a reference level. The meniscus thickness profile, which is related to the stress field in the liquid, was used to measure the sensitivity of the meniscus to the non-equilibrium effects associated with evaporation/condensation. The thickness profiles of a completely wetting film of a 1,1,2-Trichlorotrifluoroethane were measured using microcomputer based image processing of interferometric images. The automated data acquisition procedures were used to achieve enhanced resolution and thereby a better understanding of the transport processes occurring in the contact line region.

The interfacial properties of the system were initially evaluated in situ and then used to describe the transport processes associated with a heated meniscus. Consistent with theoretical models, the curvature increased very rapidly from a value of zero in the adsorbed film at the leading edge of the intrinsic meniscus to a high value and then decreased rapidly until a thickness of about 1 μm. Flow results from a disjoining pressure gradient in the thinner region below the maximum curvature and from a curvature gradient in the thicker portion. At a higher power input, the meniscus was found to oscillate and the differences between the “advanced” and “receded” meniscus states were measured and analyzed. The curvature profiles in these two states are significantly different. The study showed that change of phase heat transfer and fluid flow in thin films are strongly coupled because of their common dependence on the intermolecular force field and gravity.  相似文献   

9.
《分离科学与技术》2012,47(8):1917-1932
Abstract

In order to study the influence of the proton exchange membrane thickness on the direct methanol fuel cell (DMFC) performance, sulfonated poly (ether ether ketone) (sPEEK) membranes with a sulfonation degree (SD) of 42% and thicknesses of 25, 40, and 55 µm were prepared, characterized, and tested in a DMFC. These polymeric membranes were tested in a DMFC at several temperatures by evaluating the current-voltage polarization curve, the open circuit voltage (OCV) and the constant voltage current (CV, 35 mV). The CO2 concentration at the cathode outlet was also measured. The thinnest sPEEK membrane proved to have the best DMFC performance, although having lower Faraday efficiency (lower ohmic losses but higher methanol permeation). In contrast, the thickest membrane presented improved properties in terms of methanol permeation (lower methanol crossover). DMFC tests results for this membrane showed 30% global efficiency, obtained with pure oxygen at the cathode feed.  相似文献   

10.
Film membranes from the thermoplastic poly(ether ether ketone) (PEEK) have been extruded and tested for their microfiltration and ultrafiltration performance. High‐performance asymmetric membranes have been obtained by extruding polymer blends of PEEK, polysulphone, and a small molecule solvent mixture, and then by removing the polysulphone and solvent in a subsequent extraction step. The process for making ultrafiltration membranes differs from microfiltration membranes only in the relative blend components, and the temperature of the film pick‐up rolls. Processing parameters with important effects on the membrane performance have been identified. Microfiltration membranes are characterized by their pore‐size distributions and SEM, and ultrafiltration membranes by their rejection of bovine serum albumin, bubble point, and SEM. Composite membrane for nanofiltration utilizing the PEEK ultrafiltration membrane as a substrate performed similarly to a commercial membrane for the same purpose. This work details the best method for making PEEK film membranes published to date. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1146–1155, 1999  相似文献   

11.
The electrode ionomer is a key component of the catalyst layer and therefore the introduction of new electrode ionomer would have a significant effect on cell performance. To investigate the effect of sulfonated poly(ether ether ketone) (sPEEK) as the electrode ionomer, the catalyst layer was prepared using sPEEK ionomer and its physical properties such as pore structure and the hydrophobicity were examined. The electrochemical characteristics of the membrane and electrode assemblies employing sPEEK ionomer-based catalyst layer were also analyzed. Even though sPEEK ionomer-based catalyst layer showed lower ohmic resistance compared with Nafion ionomer-based catalyst layer, complete pore-filling of sPEEK into the primary pore caused reduction in reactive surface area of the catalyst and hindrance in gas transfer. In addition, the very low hydrophobicity of sPEEK ionomer-based catalyst layer deteriorated gas transfer due to an increased water flooding.  相似文献   

12.
The macro-homogeneous porous electrode theory is used to develop a model which describes the catalyst layer of the hydrogen electrode formed by catalyst particles that are bonded to the membrane. The water transport in the catalyst layer and polymer electrolyte membrane is considered. The effects of catalyst layer structure parameters such as polymer volume fraction, catalyst layer thickness, platinum loading and reactant gas humidity as well as CO poison on the hydrogen electrode behavior are examined. The results show that the catalyst layer thickness has a significant effect on the electrode performance. A thicker catalyst layer will result in a larger ohmic voltage loss and higher catalyst cost. The optimal polymer volume fraction and catalyst layer thickness are 0.5 and 1.5–4 μm, respectively, for this electrode. An optimal platinum surface coverage on carbon need not exceed 20% (20 wt% Pt/C). Larger platinum coverage will increase the cost, but only slightly enhance the electrode performance.  相似文献   

13.
Thin NaA zeolite membranes, with uniform and small crystals, were prepared on the tubular -Al2O3 support by adding a small amount of tetramethylammonium hydroxide (TMAOH) in the clear synthesis solution. The as-synthesized NaA zeolite membranes were characterized by XRD and SEM. The permeation properties of the membranes were evaluated by pervaporation and gas permeation. The effects of TMAOH amount on membrane formation and permeation properties were investigated. By addition of suitable amount of TMAOH in the clear synthesis solution, the crystals size of NaA zeolite could be remarkably reduced from about 10 μm to 3–4 μm, and the membrane thickness correspondingly reduced from about 16 μm to 5 μm. The thinner membrane prepared by adding TMAOH in the clear synthesis solution, with uniform and small crystal, displayed higher perm-selective properties than that without adding TMAOH. For the as-synthesized NaA zeolite membrane prepared with adding suitable amount of TMAOH (x = 1), the separation factor (water/isopropanol) was 4700 and the flux was 1.67 kg/(m2 h), which were higher than that without adding TMAOH of 339 and 1.08 kg/(m2 h), respectively. The ideal separation factor of H2/N2 was 6.60, higher than that without adding TMAOH of 3.41.  相似文献   

14.
In order to optimize the metalorganic chemical vapor deposition process for PbZrxTi1−xO3 (PZT) thin films, the effect of purge gas species was investigated. Two steps of gas input process for stabilizing reaction chamber pressure, the gas flow prior to PbTiO3 (PTO) seed layer deposition and PZT thin film deposition, were varied and their effect on structural and electrical properties were examined with regard to the memory device application. PZT film properties exhibited remarkable dependency on the gas species before PTO seed deposition, and insignificant dependency on the gas species before PZT film deposition. With the optimized pre-deposition gas flow, PZT thin film showed excellent properties such as high (1 1 1)-orientation (92.2%), high remnant polarization value of 71 μC/cm2 at 3 V. Retention property also showed a heavy dependency on the pre-deposition gas flow that 91.1% of initial charge could be maintained after 100 h of baking at 150 °C.  相似文献   

15.
Novel bisphenol monomers ( 1a‐d ) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4‐tert‐butylanilne, respectively. A series of cardo poly(arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a‐d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H2, O2, N2, and CO2. The polymers showed high glass transition temperature in the range 230–296°C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410°C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O2 and 13.80 barrers to CO2, with ideal selectivity factors of 4.24 for O2/N2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure–property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4‐tert‐butylphenyl group improved the gas permeability of polymers evidently. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
The behavior of sulfonated poly(ether ether ketone) (sPEEK) membranes in ethanol–water systems was studied for possible application in direct ethanol fuel cells (DEFCs). Polymer membranes with different degrees of sulfonation were tested by means of uptake, swelling, and ethanol transport with dynamic measurements (liquid–liquid and liquid–gas systems). Ethanol permeability was determined in an liquid–liquid diffusion cell. For membranes with an ion‐exchange capacity (IEC) between 1.15 and 1.75 mmol/g, the ethanol permeability varied between 5 × 10?8 and 1 × 10?6 cm2/s, being dependent on the measuring temperature. Ethanol and water transport in liquid–gas systems was tested with pervaporation as a function of IEC and temperature. Higher IEC accounted for higher fluxes and lower water/ethanol selectivity. The temperature had a large effect on the fluxes, but the selectivity remained constant. Furthermore, the membranes were characterized with proton conductivity measurements. The proton diffusion coefficient was calculated, and a transition in the proton transfer mechanism was found at a water number of 12. Membranes with high IEC (>1.6 mmol/g) exhibited larger proton diffusion coefficients in ethanol–water systems than in water systems. The membrane with the lowest IEC exhibited the best proton transport to ethanol permeability selectivity. The use of sPEEK membranes in DEFC systems depends on possible modifications to stabilize the membranes in the higher conductive region rather than on modifications to increase the proton conductivity in the stable region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
液晶冠醚的合成及在分析化学中的应用   总被引:2,自引:0,他引:2  
讨论了近年来液晶冠醚的合成方法及其性质,并总结了其离子传输,分子识别以及在色谱分析,LB膜等方面的应用。  相似文献   

18.
Sulfonated poly(aryl ether ketone)s (SPAEK) copolymers were synthesized by aromatic nucleophilic polycondensation from 3,3′, 5,5′‐tetramethyl‐4, 4′–biphenol, 1,4‐bis(4‐fluorobenzoyl) benzene, and disulfonated difluorobenzophenone. The SPAEK membranes did not exhibit excessive swelling in hot water and at the same time show the proton conductivities in the range of 0.030 S/cm to 0.099 S/cm at 80°C. The methanol diffusion coefficients of the SPAEK membranes were in the range of 4.7 × 10?7 to 8.1 × 10?7cm2/s measured at 25°C. The transport properties of this series of SPAEK copolymers were compared to poly(aryl ether ether ketone)s (SPEEK), poly(aryl ether ether ketone ketone)s (SPEEKK), and Nafion® membranes. It was found that the transport properties (including proton conductivity and methanol permeability) follows the trend of SPEEKK‐60 < SPAEK‐60 < SPEEK‐60 < Nafion® 117, the order of which is also attributed to the differences in the chemical structure of the polymers and the membrane morphology. In general, this novel series of SPAEK membranes possess various advantages, such as low cost of the initial monomers, high thermal and mechanical stability, and low methanol permeability while simultaneously possessing sufficient proton conductivity, which makes them notably promising as proton exchange membrane (PEM) materials in direct methanol fuel cell (DMFC) applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Baijun Liu  Gilles P. Robertson  Wei Hu 《Polymer》2005,46(25):11279-11287
Two novel poly(aryl ether)s, dimethylphenylated poly(ether nitrile) (6H-PEN) and dimethylphenylated poly(ether ether ketone) (6H-PEEK), derived from (3,5-dimethylphenyl)hydroquinone monomer, were synthesized via aromatic nucleophilic substitution polycondensation. They showed high glass transition temperatures and were soluble in common solvents. A comparison of gas permeabilities and permselectivities among methylphenylated (3H-PEEK and 3H-PEN), trifluoromethylphenylated (3F-PEEK and 3F-PEN), dimethylphenylated (6H-PEEK and 6H-PEN) and 3,5-ditrifluoromethylphenylated (6F-PEEK and 6F-PEN) poly(aryl ether)s were studied. Compared with the methylated polymers, the corresponding fluoromethylated polymers had generally higher permeabilities. The 3F and 6F polymers had combined permeabilities and permselectivity properties attractive for O2/N2 separation. 6F-PEN exhibited the best gas separation properties for the O2/N2 pair, and P(O2), and P(O2)/P(N2) values were 6.6 and 5.9, respectively.  相似文献   

20.
Woei-Jye Lau 《Desalination》2009,249(3):996-89
Polyethersulfone (PES)/poly (ether ether ketone) (SPEEK) blends nanofiltration membrane at different SPEEK contents were prepared using a simple dry-jet wet spinning technique. The SPEEK polymer with fixed sulfonation degree was used for membrane preparation and characterized using FTIR and nuclear magnetic resonance (NMR) spectrometer. The morphological and electrical properties of the blends membrane were deduced based on the combination of irreversible thermodynamic model, steric-hindrance pore model (SHP) and Teorell-Meyer-Sievers model (TMS). The modeling results have been analyzed and discussed. The effect of SPEEK content on the blend properties was further studied in detail by FTIR, DSC and TGA and the results were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号