共查询到19条相似文献,搜索用时 62 毫秒
1.
所提出的算法将粒子群优化算法和混沌算法相结合,既摆脱了算法搜索后期易陷入局部极值点的缺点,同时又保持了前期搜索的快速性,最后通过4个测试函数将该算法与基本粒子群算法进行仿真对比,比较结果表明基于混沌搜索的混和粒子群优化算法在收敛性和稳定性等方面明显优于基本粒子群优化算法. 相似文献
2.
基于混沌搜索的混和粒子群优化算法 总被引:1,自引:0,他引:1
所提出的算法将粒子群优化算法和混沌算法相结合,既摆脱了算法搜索后期易陷入局部极值点的缺点,同时又保持了前期搜索的快速性.最后通过4个测试函数将该算法与基本粒子群算法进行仿真对比,比较结果表明基于混沌搜索的混和粒子群优化算法在收敛性和稳定性等方面明显优于基本粒子群优化算法. 相似文献
3.
针对粒子群算法在迭代后期易陷入局部最优的不足,采用Tent映射所产生的混沌序列在粒子个体最优点和全局最优点附近进行混沌搜索,利用混沌搜索的全局遍历性和随机性提高了粒子群优化算法的全局搜索能力和抗早熟收敛性能。几个典型测试函数的仿真结果证明了该算法的可行性。 相似文献
4.
针对粒子群优化算法(PSO)易于陷入局部最优解并存在早熟收敛的问题,利用禁忌搜索算法较强的“爬山”能力,搜索时能够跳出局部最优解,转向解空间的其他区域的特点,提出了一种新的基于禁忌搜索(TS)的混合粒子群优化算法(TS—PSO),并选用两个函数进行测试.结果表明,TS—PSO比其他改进粒子群算法更能提高收敛速度,获得全局最优解. 相似文献
5.
粒子群优化算法本身在多峰复杂函数时会出现早熟收敛现象,降低粒子的多样性,导致粒子群不能收敛到全局极值点。针对粒子群优化算法的局限性,把混沌优化思想引入到粒子群算法,采用混沌优化粒子群算法对测试函数进行仿真,并在此基础上加入惯性因子对混沌优化粒子群算法进一步改进,Matlab仿真结果表明,改进的混沌优化粒子群算法,结合了混沌和粒子群算法共同的优点,能快速、准确地搜索到全局最优值。 相似文献
6.
针对传统的K-means算法对初始聚类中心取值敏感和易陷入局部最优解等缺点,提出一种带时间因子的改进粒子群优化(Particle Swarm Optimization,PSO)聚类算法。首先在PSO算法中引入反映时间效应的动态调整时间因子,以避免粒子在最优解附近震荡,为保证粒子在规定范围内运动,采用边界缓冲墙对越界粒子进行处理;其次针对粒子群算法存在的全局搜索性能问题,通过改进的混沌技术对粒子群进行扰动,以混沌搜索替代随机搜索,确保种群的多样性,进而使粒子群向更优的方向移动;最后将改进后的粒子群算法结合K-means算法,以提高粒子的局部勘探能力,从而更快地找到全局最优位置。对UCI中的Iris数据集和Wine数据集仿真表明,该算法相比其他2种算法,聚类准确率分别增长了5.1%和1.3%,1.79%和1.09%。 相似文献
7.
由于基本粒子群优化算法存在初始化随机性和遍历性不强,全局搜索容易陷入局部最优的问题,提出了基于混沌和多群体的粒子群优化算法,利用混沌特性初始化粒子,增强其随机性和遍历性,并根据适应度值将粒子群划分为多个群体,对不同群体中粒子的速度和位置采取不同的计算方法,进一步提高算法的收敛速度和精度。 相似文献
8.
无功优化对提高电力系统的安全性和稳定性具有重要意义.针对传统粒子群算法在求解大规模、强非线性无功优化时易陷入早熟、局部收敛等问题,应用Logistic混沌优化方法,充分利用其遍历性进行寻优.另外,为保障粒子群算法初值的均匀性,结合Chebyshev映射和Logistic映射,引入一种组合混沌映射并将其应用于粒子初始化,提高初始变量的均匀性,从而提高算法全局寻优能力.对粒子群速度更新过程中存在的惯性取值问题,引入一种基于种群速度的动态惯性权重策略.最后将这一算法应用于电力系统无功优化.算例表明,算法具有较强的全局搜索能力和较高的效率. 相似文献
9.
杨松铭 《齐齐哈尔轻工业学院学报》2011,(4):68-72
提出了一种基于混沌思想的粒子群优化算法,它利用粒子群优化算法收敛速度快和混沌运动遍历性的特点,对于陷入局部极小点的粒子,引入混沌序列重新初始化,从而使惰性粒子能够跳出束缚并快速搜寻到全局最优解。对几个经典函数的测试计算表明,其在收敛速度和精度上均优于标准的PSO算法。 相似文献
10.
为提高车间作业调度效率,提出一种基于混沌粒子群算法的车间作业调度优化方法。首先以机器加工时间最短为优化目标,建立一个多约束的车间作业调度数学模型,然后采用粒子群算法对其进行求解,并通过采用混沌机制保持粒子多样性。仿真测试表明,混沌粒子群算法可以获得车间作业调度方案,具有一定应用价值。 相似文献
11.
一种改进的粒子群算法 总被引:2,自引:0,他引:2
针对粒子群算法搜索精度不高的问题,提出了一种改进的粒子群算法。该算法一方面通过跟踪个体极值、全局极值和周围极值来搜索解空间的最优值;另一方面通过引入3种非线性递减函数对惯性权重进行调整,仿真结果表明改进的粒子群算法具有更强的寻优能力及更高的搜索精度。 相似文献
12.
改进的协同粒子群优化算法 总被引:1,自引:0,他引:1
针对协同粒子群优化算法存在停滞,不能保证收敛到局部或全局最优值的问题,提出一种改进的协同粒子群优化算法(CCPSO-Hk),该算法将混沌理论引入协同粒子群算法(Chaos PSO)中,利用混沌运动的随机性、遍历性和规律性等改善了协同粒子群算法(Cooperate Particle Swarm Optimization)的性能.通过仿真验证算法的有效性. 相似文献
13.
新型混合粒子群优化算法 总被引:3,自引:0,他引:3
针对粒子群算法易陷入局部极值、精度低等缺点,提出了一种基于模拟退火与混沌思想的新型粒子群优化算法(SA-CPSO).在该算法的初始阶段,对粒子位置进行混沌初始化,并引入模拟退火算法对每个粒子的适应度进行评价;在该算法运行过程中根据群体适应度方差对粒子群进行混沌更新;最后通过对几种经典函数的测试计算,结果表明,相对于标准粒子群算法,该新型混合算法提高了局部搜索能力和搜索精度,并有效避免了早熟现象的产生. 相似文献
14.
一种改进的粒子群算法 总被引:4,自引:0,他引:4
粒子群算法是求解函数优化问题的一种新的进化算法,然而它在求解高维函数时容易陷入局部最优.为了克服这个缺点,提出了一种新的粒子群算法,算法对粒子的速度和位置更新公式进行了改进,使粒子在其最优位置的基础上进行位置更新,增强了算法的寻优能力.通过对5个基准函数的仿真实验,表明了改进算法的有效性. 相似文献
15.
在研究微粒群算法生物特征的基础上,提出了一种异步随机微粒群算法——ASPSO.该方法是在微粒的进化过程中,采用异步模式使全局最好位置信息以异步方式在种群中传播。从理论上证明了ASPSO与同步模式微粒群算法SPSO相比较具有更快的局部收敛速度,并对四个经典测试函数进行了仿真测试,测试结果表明:与SPSO相比,ASPSO算法具有更快的收敛速度。 相似文献
16.
一种带交叉算子的改进的粒子群优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法(PSO)固有的缺点,在研究标准的粒子群优化算法理论的基础上,提出了一种带交叉因子的改进的粒子群优化算法(MPSO),以解决算法的早熟收敛问题。该算法在搜索过程中引入了交叉因子,增加了粒子的多样性,克服了标准粒子群优化算法易陷入局部极优点的不足,并且算法有较快的收敛速度。该算法有较强的收敛性,还可以引入变异算子。将改进后的算法运用常见的几个测试函数进行了寻优仿真,仿真结果验证了带交叉因子的粒子群算法的可行性和有效性。 相似文献
17.
This paper presents a new approach based on the particle swarm optimization (PSO) algorithm for solving the drilling path optimization problem belonging to discrete space.Because the standard PSO algorithm is not guaranteed to be global convergence or local convergence,based on the mathematical algorithm model,the algorithm is improved by adopting the method of generate the stop evolution particle over again to get the ability of convergence to the global optimization solution.And the operators are improved by establishing the duality transposition method and the handle manner for the elements of the operator,the improved operator can satisfy the need of integer coding in drilling path optimization.The experiment with small node numbers indicates that the improved algorithm has the characteristics of easy realize,fast convergence speed,and better global convergence characteris- tics.hence the new PSO can play a role in solving the problem of drilling path optimization in drilling holes. 相似文献
18.
针对粒子群优化算法后期收敛速度慢,且容易陷入局部最优解的缺点,在算法中加入动态扰动项,改变了速度的更新公式,使粒子可以跳出局部极值.后期引入禁忌搜索算法,充分利用禁忌搜索的记忆能力和爬上能力,能够快速搜索到全局最优解.通过对测试函数的仿真实验表明,采用动态扰动项的禁忌粒子群优化算法更能提高收敛速度,获得全局最优解. 相似文献