首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carboxylic acid reductases (CARs) catalyze the reduction of a broad range of carboxylic acids into aldehydes, which can serve as common biosynthetic precursors to many industrial chemicals. This work presents the systematic biochemical characterization of five carboxylic acid reductases from different microorganisms, including two known and three new ones, by using a panel of short‐chain dicarboxylic acids and hydroxy acids, which are common cellular metabolites. All enzymes displayed broad substrate specificities. Higher catalytic efficiencies were observed when the carbon chain length, either of the dicarboxylates or of the terminal hydroxy acids, was increased from C2 to C6. In addition, when substrates of the same carbon chain length are compared, carboxylic acid reductases favor hydroxy acids over dicarboxylates as their substrates. Whole‐cell bioconversions of eleven carboxylic acid substrates into the corresponding alcohols were investigated by coupling the CAR activity with that of an aldehyde reductase in Escherichia coli hosts. Alcohol products were obtained in yields ranging from 0.5 % to 71 %. The de novo stereospecific biosynthesis of propane‐1,2‐diol enantiomer was successfully demonstrated with use of CARs as the key pathway enzymes. E. coli strains accumulated 7.0 mm (R)‐1,2‐PDO (1.0 % yield) or 9.6 mm (S)‐1,2‐PDO (1.4 % yield) from glucose. This study consolidates carboxylic acid reductases as promising enzymes for sustainable synthesis of industrial chemicals.  相似文献   

2.
Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.  相似文献   

3.
A single-transaminase-catalyzed biocatalytic cascade was developed by employing the desired biocatalyst, ATA-117-Rd11, that showed high activity toward 2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid (PPO) and α-ketoglutarate, and low activity against pyruvate. The cascade successfully promotes a highly asymmetric amination reaction for the synthesis of l -phosphinothricin (l -PPT) with high conversion (>95 %) and>99 % ee. In a scale-up experiment, using 10 kg pre-frozen E. coli cells harboring ATA-117-Rd11 as catalyst, 80 kg PPO was converted to ≈70 kg l -PPT after 24 hours with a high ee value (>99 %).  相似文献   

4.
Screening for stereoselective cyanohydrin synthesis in 96‐well plates was employed in the development of an efficient, pH‐stable hydroxynitrile lyase for the conversion of sterically hindered aliphatic aldehydes. Site‐saturation mutagenesis (SSM) resulted in a powerful catalyst for the stereoselective conversion of hydroxypivalaldehyde and pivalaldehyde to their corresponding (R)‐cyanohydrins (ee >97%) which are used as chiral building blocks (e.g., for pantothenic acid production). Furthermore, redesigning the PaHNL5 gene and improving its expression by Pichia pastoris with the help of a new PAOX1 promoter variant and the helper protein PDI (protein disulfide isomerase) led to elevated amounts of today’s most efficient biocatalyst for vitamin B5 synthesis.  相似文献   

5.
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high‐volume, low‐price sectors, such as polymers, to low‐volume, high‐price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas‐phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a “synthetic platform technology”. Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2‐arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.  相似文献   

6.
A fast and sensitive colorimetric assay (FRED, fast and reliable ene‐reductases detection) that allows the estimation of levels of conversion of ene‐reductase (ER)‐catalysed reactions has been developed. The activated olefin is reduced by ER at the expense of NAD(P)H cofactor, whose regeneration is carried out in situ by the glucose/glucose dehydrogenase system. Subsequently, the consumption of the co‐substrate glucose is determined colorimetrically by a multienzymatic system. The FRED assay offers a wide range of possible applications, from enzyme fingerprinting and kinetic analysis, to primary screening of enzyme libraries and optimisation of ERs' performances under different reaction conditions.  相似文献   

7.
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of “green chemistry” also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes’ catalytic power.  相似文献   

8.
9.
An easily accessible and inexpensive room temperature ionic liquid, 1‐pentyl‐3‐methylimidazolium bromide, [pmIm]Br efficiently catalyzes the reaction of alkyl halides or acyl halides with thiols without any solvent at room temperature leading to the synthesis of thioethers and thioesters in high yields. This reaction has also been extended for the preparation of dithianes and transthioetherification. The ionic liquid is recovered and recycled for subsequent runs.  相似文献   

10.
阿魏酸衍生物的应用及合成   总被引:6,自引:0,他引:6  
综述了阿魏酸和阿魏酸衍生物在医药、化妆品、食品等方面的广泛应用及阿魏酸酯类、酰胺类、酮类、醚类等衍生物的合成研究进展。通过同传统的化学合成方法的比较说明了生物催化合成方法的优势。  相似文献   

11.
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.  相似文献   

12.
微波快速合成肉桂酸   总被引:1,自引:0,他引:1  
以苯甲醛、乙酸酐为原料、KF/K2CO3为催化剂微波快速辐射,并用正交试验优选出最佳合成工艺条件:n(苯甲醛):n(乙酸酐):n(KF/K2CO3)=1:3:1.45,微波功率650W,反应6min,产率可达76.09%。  相似文献   

13.
14.
The rare nonproteinogenic amino acid, meta-l -tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild-type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3-position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme-catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2-hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-l -tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.  相似文献   

15.
Disulfide-rich macrocyclic peptides—cyclotides, for example—represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants—inter alia, omniligase-1—for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1. The synthesis of the kB1 variant T20K was successfully demonstrated at multi-gram scale. The existence of several ligation sites for each macrocycle makes this approach highly flexible and facilitates both the larger-scale manufacture and the engineering of bioactive, grafted cyclotide variants, therefore clearly offering a valuable and powerful extension of the existing toolbox of enzymes for peptide head-to-tail cyclization.  相似文献   

16.
The (+)‐ as well as the (−)‐enantiomer of the pyrrolizidine alkaloid xenovenine were prepared within five steps with 17 and 30% overall yields, respectively, in optically pure form, >99% ee as well as >99% de. In the asymmetric key step a transaminase performed a regio‐ and stereoselective monoamination of a triketone. By employing two enantiocomplementary transaminases from Arthrobacter sp. both enantiomers were accessible. The triketone was readily prepared via two steps starting from commercially available, achiral 2‐(n‐heptyl)furan. In the final catalytic hydrogenation step, the newly introduced chiral centre directed hydrogen addition to form preferentially the desired (5Z,8E)‐diastereomer. The regio‐ and stereoselective amination of a single ketone moiety out of three allowed the performance of the shortest and highest yielding total synthesis of the bicyclic showcase pyrrolizidine alkaloid without the need for protecting strategies.

  相似文献   


17.
18.
19.
综述了杂多酸及其盐在合成芳酮的Friedel-Crafts(F-C)酰化反应和Fries重排中的应用,并与其它类型的催化剂作了比较。结果表明,杂多酸(盐)是一类性能优良的合成芳酮的催化剂,其催化性能优于沸石、分子筛等固体酸催化剂。  相似文献   

20.
The 2‐O‐α‐d ‐glucoside of l ‐ascorbic acid (AA‐2G) is a highly stabilized form of vitamin C, with important industrial applications in cosmetics, food, and pharmaceuticals. AA‐2G is currently produced through biocatalytic glucosylation of l ‐ascorbic acid from starch‐derived oligosaccharides. Sucrose would be an ideal substrate for AA‐2G synthesis, but it lacks a suitable transglycosidase. We show here that in a narrow pH window (pH 4.8–6.0, with sharp optimum at pH 5.2), sucrose phosphorylases catalyzed the 2‐O‐α‐glucosylation of l ‐ascorbic acid from sucrose with high efficiency and perfect site‐selectivity. Optimized synthesis with the enzyme from Bifidobacterium longum at 40 °C gave a concentrated product (155 g L?1; 460 mm ), from which pure AA‐2G was readily recovered in ~50 % overall yield, thus providing the basis for advanced production. The peculiar pH dependence is suggested to arise from a “reverse‐protonation” mechanism in which the catalytic base Glu232 on the glucosyl–enzyme intermediate must be protonated for attack on the anomeric carbon from the 2‐hydroxyl of the ionized l ‐ascorbate substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号