首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Smart hydrogels hold much potential for biocatalysis, not only for the immobilization of enzymes, but also for the control of enzyme activity. We investigated upper critical solution temperature-type poly N-acryloyl glycinamide (pNAGA) hydrogels as a smart matrix for the amine transaminase from Bacillus megaterium (BmTA). Physical entrapment of BmTA in pNAGA hydrogels results in high immobilization efficiency (>89 %) and high activity (97 %). The temperature-sensitiveness of pNAGA is preserved upon immobilization of BmTA and shows a gradual deswelling upon temperature reduction. While enzyme activity is mainly controlled by temperature, deactivation tended to be higher for immobilized BmTA (≈62–68 %) than for free BmTA (≈44 %), suggesting a deactivating effect due to deswelling of the pNAGA gel. Although the deactivation in response to hydrogel deswelling is not yet suitable for controlling enzyme activity sufficiently, it is nevertheless a good starting point for further optimization.  相似文献   

2.
Pyridoxal-5’-phosphate (PLP)-dependent enzymes have garnered interest for their ability to synthesize non-standard amino acids (nsAAs). One such class of enzymes, O-acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l -cysteine. Here, we examine the β-substitution capability of the OASS from Citrullus vulgaris (CvOASS), a putative l -mimosine synthase. While the previously reported mimosine synthase activity was not reproducible in our hands, we successfully identified non-native reactivity with a variety of O-nucleophiles. Optimization of reaction conditions for carboxylate and phenolate substrates led to distinct conditions that were leveraged for the preparative-scale synthesis of nsAAs. We further show this enzyme is capable of C−C bond formation through a β-alkylation reaction with an activated nitroalkane. To facilitate understanding of this enzyme, we determined the crystal structure of the enzyme bound to PLP as the internal aldimine at 1.55 Å, revealing key features of the active site and providing information that may guide subsequent development of CvOASS as a practical biocatalyst.  相似文献   

3.
Pyridoxal‐phosphate (PLP)‐dependent enzymes catalyse a remarkable diversity of chemical reactions in nature. A1RDF1 from Arthrobacter aurescens TC1 is a fold type I, PLP‐dependent enzyme in the class III transaminase (TA) subgroup. Despite sharing 28 % sequence identity with its closest structural homologues, including β‐alanine:pyruvate and γ‐aminobutyrate:α‐ketoglutarate TAs, A1RDF1 displayed no TA activity. Activity screening revealed that the enzyme possesses phospholyase (E.C. 4.2.3.2) activity towards O‐phosphoethanolamine (PEtN), an activity described previously for vertebrate enzymes such as human AGXT2L1, enzymes for which no structure has yet been reported. In order to shed light on the distinctive features of PLP‐dependent phospholyases, structures of A1RDF1 in complex with PLP (internal aldimine) and PLP ? PEtN (external aldimine) were determined, revealing the basis of substrate binding and the structural factors that distinguish the enzyme from class III homologues that display TA activity.  相似文献   

4.

Electrospun nanofibers, with their porous structures, high surface-to-volume ratio, and good mechanical properties, are used as a support material for enzyme immobilization. In this study, the poly(vinyl alcohol) and polyacrylamide bicomponent (PVA–PAAm) nanofibers were fabricated via the electrospinning method. Synthesized PAAm was characterized with size exclusion chromatography (SEC). Nanofibers were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscope (SEM). DSC and TGA analyses showed that the nanofibers were more durable than PVA and PAAm polymers. SEM images demonstrated that all nanofibers possessed uniform and smooth structures (average diameter about 300 nm). FTIR results have shown that PAAm successfully participates in nanofiber structure. The produced nanofibers were used as support material for covalent immobilization of horseradish peroxidase (HRP). The optimum temperature for free HRP was 45 °C, whereas it was 50 °C for the immobilized enzyme. The immobilized HRP showed better storage and thermal stability than free HRP. The kinetic parameters (K m and V max) were found to be 2.42 mM and 0.027 U for the immobilized HRP and 1.86 mM and 0.079 U for the free HRP, respectively. The immobilized enzyme could be used effectively for 25 cycles with 54% retention of the activity. The immobilized HRP was also used for the conversion of phenol. Phenol removal was found to be about 29.68% at 180 min in real wastewater. The novel PVA–PAAm nanofibrous material was successfully used as a support material for covalent immobilization of HRP. Immobilized enzymes such as oxido-reductases onto the PVA–PAAm bicomponent nanofiber could be recommended in the treatment of organic pollutants in industrial effluents.

  相似文献   

5.
Au/poly anthranilic acid/poly vinyl acetate and Au/poly(anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline)/poly vinyl acetate nanofibers through electrospinning and their modification with covalent tyrosinase (Ty) immobilization was performed. It was realized by surface activation using N-(3-dimetylaminopropyl)-N-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. Electrochemical impedance spectroscopy (EIS), FTIR–ATR, Raman spectroscopy, and bicinchoninic acid assay analyses demonstrated that Ty was stably and covalently bonded onto the nanofibers. Increase in surface roughness [atomic force microscopy (AFM)] and the presence of Cu atoms in the nanofiber composition after enzyme immobilization confirmed the Ty immobilization. The charge transfer resistances of the nanofibers decreased due to changes in the nanofiber surfaces after attachment of enzyme.  相似文献   

6.
The fatty acid photodecarboxylase from Chlorella variabilis NC64 A (CvFAP) catalyses the light-dependent decarboxylation of fatty acids. Photoinactivation of CvFAP still represents one of the major limitations of this interesting enzyme en route to practical application. In this study we demonstrate that the photostability of CvFAP can easily be improved by the administration of medium-chain length carboxylic acids such as caprylic acid indicating that the best way of maintaining CvFAP stability is ‘to keep the enzyme busy’.  相似文献   

7.
Poly(vinyl alcohol) (PVA) nanofibers were formed by electrospinning. Metal chelated nanofibrous membranes were prepared by reaction between Cu(II) solution and nanofibers, and which were used as the matrix for catalases immobilization. The constants of Cu(II) adsorption and properties of immobilized catalases were studied in this work. The Cu(II) concentration was determined by atomic absorption spectrophotometer (AAS), the immobilized enzymes were confirmed by the Fourier transform infrared spectroscopy (FTIR), and the amounts of immobilized enzymes were determined by the method of Bradford on an ultraviolet spectrophotometer (UV). Adsorption of Cu(II) onto PVA nanofibers was studied by the Langmuir isothermal adsorption model. The maximum amount of coordinated Cu(II) (qm) was 2.1 mmol g−1 (dry fiber), and the binding constant (Kl) was 0.1166 L mmol−1. The immobilized catalases showed better resistance to pH and temperature inactivation than that of free form, and the thermal and storage stabilities of immobilized catalases were higher than that of free catalases. Kinetic parameters were analyzed for both immobilized and free catalases. The value of Vmax (8425.8 μmol mg−1) for the immobilized catalases was smaller than that of the free catalases (10153.6 μmol mg−1), while the Km for the immobilized catalases were larger. It was also found that the immobilized catalases had a high affinity with substrate, which demonstrated that the potential of PVA‐Cu(II) chelated nanofibrous membranes applied to enzyme immobilization and biosensors. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Enzymes can be used multiple times when they are immobilized on a support. More enzymes can be immobilized on a surface when nanofibers are used as a supporting surface because the specific surface area increases tremendously. In this regard, polycaprolactam/cellulose monoacetate (PA6/CMA) and polycaprolactone/cellulose monoacetate (PCL/CMA) blended nanofibers (NFs) were prepared via an electrospinning process. Protease enzymes were immobilized on neat PA6, PCL, PA6/CMA, and PCL/CMA nanofibers and glutaraldehyde (GA) activated analogs through the physical adsorption method. The immobilized enzyme activity was measured by using a casein substrate, and the results were compared with free enzyme activity. Among all of the samples, the highest immobilization yield of about 82% was obtained with GA‐activated neat PCL NF samples. The best remaining activity of the immobilized enzymes on pure CMA NFs was found to be 59% after seven reuses. Even after nine reuses, enzyme activities are still observed on the CMA NF samples. It was expected that the addition of CMA in PCL and PA6 NFs would increase the reusability number to reach the reusability of CMA NFs, but it was not significantly enhanced. If CMA chains could be mostly collected on the sheath or close to the sheath of the NFs during the electrospinnig process, this target could be achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45479.  相似文献   

9.
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. K m was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.  相似文献   

10.
Polyacrylonitrile/polyurethane/poly(m-anthranilic acid) nanofibers were fabricated by electrospinning. Tyrosinase immobilization was performed by EDC/N-hydroxyl succinimide activation. Covalent binding of tyrosinase onto nanofibers was confirmed by Fourier transform infrared-attenuated total reflectance, and bicinchoninic acid assay revealed the amount of enzyme. Nanofiber morphology and composition were characterized by scanning electron microscopy/energy-dispersive X-ray spectroscopy (EDX). Nanofibers became smoother and thicker after tyrosinase immobilization. Effects of enzyme on nanofibers were investigated by electrochemical impedance spectroscopy and the data were fitted to equivalent electrical circuit model. EDX-mapping showed uniform distribution of enzyme. The solution resistance and charge transfer resistance of nanofibers decreased after enzyme immobilization.  相似文献   

11.
BACKGROUND: Immobilized enzymes provide many advantages over free enzymes including repeated or continuous reuse, easy separation of the product from reaction media, easy recovery of the enzyme, and improvement in enzyme stability. In order to improve catalytic activity of laccase and increase its industrial application, there is great interest in developing novel technologies on laccase immobilization. RESULTS: Magnetic Cu2+‐chelated particles, prepared by cerium‐initiated graft polymerization of tentacle‐type polymer chains with iminodiacetic acid (IDA) as chelating ligand, were employed for Pycnoporus sanguineus laccase immobilization. The particles showed an obvious high adsorption capacity of laccase (94.1 mg g?1 support) with an activity recovery of 68.0% after immobilization. The laccase exhibited improved stability in reaction conditions over a broad temperature range between 45 °C and 70 °C and an optimal pH value of 3.0 after being adsorbed on the magnetic metal‐chelated particles. The value of the Michaelis constant (Km) of the immobilized laccase (1.597 mmol L?1) was higher than that of the free one (0.761 mmol L?1), whereas the maximum velocity (Vmax) was lower for the adsorbed laccase. Storage stability and temperature endurance of the immobilized laccase were found to increase greatly, and the immobilized laccase retained 87.8% of its initial activity after 10 successive batch reactions. CONCLUSION: The immobilized laccase not only can be operated magnetically, but also exhibits remarkably improved catalytic capacity and stability properties for various parameters, such as pH, temperature, reuse, and storage time, which can provide economic advantages for large‐scale biotechnological applications of laccase. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
This article reports on the preparation of novel solvent‐resistant nanofibers by electrospinning of poly(acrylonitrile‐co‐glycidyl methacrylate) (PANGMA) and subsequent chemical crosslinking. PANGMA nanofibers with diameters ranging from 200 to 600 nm were generated by electrospinning different solutions of PANGMA dissolved in N,N‐dimethylformamide. Different additives were added to reduce the fiber diameter and improve the morphology of the nanofibers. The as‐spun PANGMA nanofibers were crosslinked with 27 wt % aqueous ammonia solution at 50°C for 3 h to gain the solvent resistance. Swelling tests indicated that the crosslinked nanofibers swelled in several solvents but were not dissolved. The weight loss of all the crosslinked nanofibrous mats immersed in solvents for more than 72 h was very low. The characterization by electron microscopy revealed that the nanofibrous mats maintained their structure. This was also confirmed by the results of the pore size measurements. These novel nanofibers are considered to have a great potential as supports for the immobilization of homogeneous catalysts and enzymes. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization.  相似文献   

14.
Poly(lactic acid) (PLA) nanofibers, as a biodegradable and environmentally friendly material, have potential applications such as biological medicine, efficient filter material, and so on. PLA nanofibers are usually prepared by solution electrospinning method with toxic solvents, such as chloroform, chloromethane, and N,N‐dimethyl formamide. In this work, PLA nanofibers were fabricated with a self‐designed melt differential electrospinning device, assisted by addition of nontoxic acetyl tributyl citrate (ATBC) and by airflow. Molecular dynamics simulations were performed to understand the experimental results. The results revealed that the fiber diameter decreased with increasing airflow velocity, and fibers with a diameter as small as 236 nm were obtained at the highest airflow velocity of 25 m/s (with 6 wt % of ATBC). Furthermore, a significantly accelerated falling speed of the jets of about 347 times of that without airflow was achieved at a flow rate of 25 m/s. These results demonstrated that the combination of adding ATBC and airflow assistance was a good strategy to achieve finer fibers with improved stability and efficiency, making it a promising way for mass green production of PLA nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46554.  相似文献   

15.
Phenylalanine ammonia-lyase (PAL) catalyzes the nonoxidative deamination of phenylalanine to yield trans-cinnamic acid and ammonia. Recombinant Bambusa oldhamii BoPAL1/2 proteins were immobilized onto electrospun nanofibers by dextran polyaldehyde as a cross-linking agent. A central composite design (CCD)-response surface methodology (RSM) was utilized to optimize the electrospinning parameters. Escherichia coli expressed eBoPAL2 exhibited the highest catalytic efficiency among four enzymes. The optimum conditions for fabricating nanofibers were determined as follows: flow rate of 0.10 mL/h, voltage of 13.8 kV, and distance of 13 cm. The response surface models were used to obtain the smaller the fiber diameters as well as the highest PAL activity in the enzyme immobilization. Compared with free BoPALs, immobilized BoPALs can be reused for at least 6 consecutive cycles. The remained activity of the immobilized BoPAL proteins after storage at 4 °C for 30 days were between 75 and 83%. In addition, the tolerance against denaturants of the immobilized BoPAL proteins were significantly enhanced. As a result, the dextran polyaldehyde natural cross-linking agent can effectively replace traditional chemical cross-linking agents for the immobilization of the BoPAL enzymes. The PAL/nylon 6/polyvinyl alcohol (PVA)/chitosan (CS) nanofibers made are extremely stable and are practical for industrial applications in the future.  相似文献   

16.
The possibility of immobilization of the proteolytic enzymes collagenase and terrilytin in chitin carboxymethyl ester films and sponges was demonstrated and some characteristics of this process were investigated. It was found that the optimum pH for immobilization of collagenase and terrilytin lies in the range of 6.5–7.5, which approximately corresponds to the optimum pH of the effect of native enzymes. According to the data from in vitro experiments, the activity of the immobilized enzymes at the optimum pH of immobilization is 75–50% for collagenase and 80–90% for terrilytin. An increase in the molecular weight of carboxymethylchitin in the range of 60–600 kilodaltons significantly strengthens the films and simultaneously decreases the activity of the immobilized enzymes, probably due to the stronger binding of the molecules of the enzyme in the matrix of higher molecular weight. In immobilization of enzymes in sponges, the molecular weight of the polymer matrix has no effect on the activity of the immobilized enzymes. Changing the degree of substitution of carboxymethylchitin in the 0.7–1.3 range has almost no effect on the activity of the enzymes immobilized in the films and sponges.Translated from Khimicheskie Volokna, No. 5, pp. 34–37, September–October, 1995.  相似文献   

17.
Capparis spinosa L. (CSL) is a medicinal plant with high antibacterial activity against a variety of pathogens and antioxidation properties. In this paper, for the first time, nanofiber membranes of polylactic acid (PLA) containing 0, 4, 7,and 10 wt% CSL ethyl acetate extract were fabricated by electrospinning. Scanning electron microscopy showed that the fiber diameter decreased after adding CSL to the PLA nanofibers. Fourier transform infrared spectroscopy confirmed that CSL was successfully incorporated in the matrix. The water contact angle test proved that the addition of CSL improved the hydrophilic properties of the material. Moreover, the addition of CSL improved the oxidation resistance of the composite fiber membrane. A burst drug release from the composite nanofibers occurred within the first 12 hr, followed by slow release over a prolonged period of time. As the concentration of CSL increased, the inhibition ability of nanofibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) gradually increased. In summary, due to their good mechanical, antioxidant, and antibacterial properties, CSL/PLA nanofiber membranes may possess potential applications as wound dressing materials.  相似文献   

18.
This work describes the immobilization of pullulanase onto two different polymers; agarose activated with epichlorohydrin and trichlorotriazine and casein activated with epichlorohydrin, in addition to a synthetic copolymer, butylacrylate–acrylic acid (BuA/AAc). Immobilization by covalent binding yields stable enzyme activity. The operational stability of the free and immobilized enzymes showed that the enzyme immobilized by a crosslinking technique using glutaric dialdehyde (GA) showed poor durability and the relative activity decreased sharply due to leakage after repeated washing, while the enzymes immobilized by covalent bonds resulted in a slight decrease in most cases in the relative activity (around 20%) after being used 10 times. Storage for 4–6 months showed that the free enzyme lost most of its activity, while the immobilized enzyme showed the opposite behavior. Subjecting the immobilized enzymes to doses of γ‐radiation (0.5–10 Mrad) resulted in complete loss in the activity of the free enzyme at a dose of 5 Mrad, while the immobilized enzymes showed relatively high resistance to γ‐radiation up to a dose of 5 Mrad. Nuclear Magnetic Resonance (1H NMR) and FTIR measurements were carried out to confirm the structure of the polymer as well as the immobilization process of the enzyme onto the polymeric carrier. The unique biochemical characteristics, mode of action and utility of the environmentally compatible pullulanase in starch conversion are well known. Using pullulanase with β‐amylase in starch saccharification processes can increase maltose yield by 20–25%. © 2001 Society of Chemical Industry  相似文献   

19.
In this review, we present an overview of the different renewable polymers that are currently being used as matrixes for enzyme immobilization and their properties and of new developments in biocatalysts preparation and applications. Polymers obtained from renewable resources have attracted much attention in recent years because they are environmentally friendly and available in large quantities from natural sources. Different methods for the immobilization of enzymes with these matrixes are reviewed, in particular: (1) binding to a prefabricated biopolymer, (2) entrapment, and (3) crosslinking of enzyme molecules. Emphasis is given to relatively recent developments, such as the use of novel supports, novel entrapment methods and protocols of polymer derivatization, and the crosslinking of enzymes. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42125.  相似文献   

20.
Enhancing thermal conductivity of polymeric nanocomposites remains a great challenge because of the poor compatibility between nanofillers and the polymeric matrix and the aggregation effect of nanofillers. We report the enhanced thermal conductivity of poly(lactic acid) (PLA)‐based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. Graphite nanoplatelets (GNPs) were noncovalently functionalized with tannic acid (TA) by van der Waals forces and π–π interaction without perturbing the conjugated sp2 network, thus preserving the high thermal conductivity of GNPs. PLA‐based nanocomposites with different contents of TA‐functionalized GNPs (TA‐GNPs) were prepared and characterized, and the influences of TA‐GNPs content on the morphologies, mechanical properties, and thermal properties of the composites were investigated in detail. TA‐GNPs remarkably improved the thermal conductivity of PLA up to 0.77 W/(m K), showing its high potential as a thermally conductive filler for polymer‐based nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46397.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号