首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.  相似文献   

2.
Reconstitution of the biosynthetic machinery for fungal secondary metabolites in Aspergillus oryzae provides an opportunity both for stepwise determination of the biosynthetic pathways and the total biosynthesis of fungal natural products. However, to maximize the utility of the reconstitution system, a simple and rapid strategy for the introduction of heterologous genes into A. oryzae is required. In this study, we demonstrated an effective method for introducing multiple genes involved in the biosynthesis of fungal metabolites by using the expression vectors pUARA2 and pUSA2, each of which contains two cloning sites. The successful introduction of all the aflatrem biosynthetic genes (seven genes in total) after two rounds of transformation enabled the total biosynthesis of aflatrem. This rapid reconstitution strategy will facilitate the functional analysis of the biosynthetic machinery of fungal metabolites.  相似文献   

3.
The potential of actinomycetes to produce natural products has been exploited for decades. Recent genomic sequence analyses have revealed a previously unrecognized biosynthetic potential and diversity. In order to rationally exploit this potential, we have developed a sequence-guided genetic screening strategy. In this "genome mining" approach, genes that encode tailoring enzymes from natural product biosyntheses pathways serve as indicator genes for the identification of strains that have the genetic potential to produce natural products of interest. We chose halogenases, which are known to be involved in the synthesis of halometabolites as representative examples. From PCR screening of 550 randomly selected actinomycetes strains, we identified 103 novel putative halogenase genes. A phylogenetic analysis of the corresponding putative halogenases, and the determination of their sequential context with mass spectrometric analysis of cultures filtrates revealed a distinct correlation between the sequence and secondary metabolite class of the halometabolite. The described screening strategy allows rapid access to novel natural products with predetermined structural properties.  相似文献   

4.
Nucleoside natural products show diverse biological activities and serve as leads for various application purposes, including human and veterinary medicine and agriculture. Studies in the past decade revealed that these nucleosides are biosynthesized through divergent mechanisms, in which early steps of the pathways can be classified into two types (C5' oxidation and C5' radical extension), while the structural diversity is created by downstream tailoring enzymes. Based on this biosynthetic logic, we investigated the genome mining discovery potentials of these nucleosides using the two enzymes representing the two types of C5' modifications: LipL-type α-ketoglutarate (α-KG) and Fe-dependent oxygenases and NikJ-type radical S-adenosyl-L-methionine (SAM) enzymes. The results suggest that this approach allows discovery of putative nucleoside biosynthetic gene clusters (BGCs) and the prediction of the core nucleoside structures. The results also revealed the distribution of these pathways in nature and implied the possibility of future genome mining discovery of novel nucleoside natural products.  相似文献   

5.
Fungal genome sequencing has revealed many genes coding for biosynthetic enzymes, including polyketide synthases and nonribosomal peptide synthetases. However, characterizing these enzymes and identifying the compounds they synthesize remains a challenge, whether the genes are expressed in their original hosts or in more tractable heterologous hosts, such as yeast. Here, we developed a streamlined method for isolating biosynthetic genes from fungal sources and producing bioactive molecules in an engineered Saccharomyces cerevisiae host strain. We used overlap extension PCR and yeast homologous recombination to clone desired fungal polyketide synthase or a nonribosomal peptide synthetase genes (5-20 kb) into a yeast expression vector quickly and efficiently. This approach was used successfully to clone five polyketide synthases and one nonribosomal peptide synthetase, from various fungal species. Subsequent detailed chemical characterizations of the resulting natural products identified six polyketide and two nonribosomal peptide products, one of which was a new compound. Our system should facilitate investigating uncharacterized fungal biosynthetic genes, identifying novel natural products, and rationally engineering biosynthetic pathways for the production of enzyme analogues possessing modified bioactivity.  相似文献   

6.
Genome-sequencing projects have revealed that Streptomyces bacteria have the genetic potential to produce considerably larger numbers of natural products than can be observed under standard laboratory conditions. Cryptic angucycline-type aromatic polyketide gene clusters are particularly abundant. Sequencing of two such clusters from Streptomyces sp. PGA64 and H021 revealed the presence of several open reading frames that could be involved in processing the basic angucyclic carbon skeleton. The pga gene cluster contains one putative FAD-dependant monooxygenase (pgaE) and a putatively bifunctional monooxygenase/short chain alcohol reductase (pgaM), whereas the cab cluster contains two similar monooxygenases (cabE and cabM) and an independent reductase (cabV). In this study we have reconstructed the biosynthetic pathways for aglycone synthesis by cloning and sequentially expressing the angucycline tailoring genes with genes required for the synthesis of the unmodified angucycline metabolite-UWM6-in Streptomyces lividans TK24. The expression studies unequivocally showed that, after the production of UWM6, the pathways proceed through the action of the similar monooxygenases PgaE and CabE, followed by reactions catalysed by PgaM and CabMV. Analysis of the metabolites produced revealed that addition of pgaE and cabE genes directs both pathways to a known shunt product, rabelomycin, whereas expression of all genes from a given pathway results in the production of the novel angucycline metabolites gaudimycin A and B. However, one of the end products is most probably further modified by endogenous S. lividans TK24 enzymes. These experiments demonstrate that genes that are either inactive or cryptic in their native host can be used as biosynthetic tools to generate new compounds.  相似文献   

7.
In this study, a draft genome sequence of Actinoplanes sp. ATCC 53533 was assembled, and an 81‐kb biosynthetic cluster for the unusual sulfated glycopeptide UK‐68,597 was identified. Glycopeptide antibiotics are important in the treatment of infections caused by Gram‐positive bacteria. Glycopeptides contain heptapeptide backbones that are modified by many tailoring enzymes, including glycosyltransferases, sulfotransferases, methyltransferases, and halogenases, generating extensive chemical and functional diversity. Several tailoring enzymes in the cluster were examined in vitro for their ability to modify glycopeptides, resulting in the synthesis of novel molecules. Tailoring enzymes were also expressed in the producer of the glycopeptide aglycone A47934, generating additional chemical diversity. This work characterizes the biosynthetic program of UK‐68,597 and demonstrates the capacity to expand glycopeptide chemical diversity by harnessing the unique chemistry of tailoring enzymes.  相似文献   

8.
9.
10.
Diversity in non‐ribosomal peptide and polyketide secondary metabolism is facilitated by interactions between biosynthetic domains with discrete monomer loading and their cognate tailoring enzymes, such as oxidation or halogenation enzymes. The cooperation between peptidyl carrier proteins and flavin‐dependent enzymes offers a specialized strategy for monomer selectivity for oxidization of small molecules from within a complex cellular milieu. In an effort to study this process, we have developed fluorescent probes to selectively label aerobic flavin‐dependent enzymes. Here we report the preparation and implementation of these tools to label oxidase, monooxygenase, and halogenase flavin‐dependent enzymes.  相似文献   

11.
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.  相似文献   

12.
Azaphilones are a family of polyketide-based fungal natural products that exhibit interesting and useful bioactivities. This minireview explores the literature on various characterised azaphilone biosynthetic pathways, which allows for a proposed consensus scheme for the production of the core azaphilone structure, as well as identifying early diversification steps during azaphilone biosynthesis. A consensus understanding of the core enzymatic steps towards a particular family of fungal natural products can aid in genome-mining experiments. Genome mining for novel fungal natural products is a powerful technique for both exploring chemical space and providing new insights into fungal natural product pathways.  相似文献   

13.
Microbial natural products of both polyketide and nonribosomal peptide origin have been and continue to be important therapeutic agents as antibiotics, immunosupressants, and antitumor drugs. Because the biosynthetic genes for these metabolites are clustered for coordinate regulation, the sequencing of bacterial genomes continues to reveal unanticipated biosynthetic capacity for novel natural products. The re-engineering of pathways for such secondary metabolites to make novel molecular variants will be enabled by understanding of the chemical logic and protein machinery in the producer microbes. This Account analyzes the chemical principles and molecular logic that allows simple primary metabolite building blocks to be converted to complex architectural scaffolds of polyketides (PK), nonribosomal peptides (NRP), and NRP-PK hybrids. The first guiding principle is that PK and NRP chains are assembled as thioseters tethered to phosphopantetheinyl arms of carrier proteins that serve as thiotemplates for chain elongation. The second principle is that gate keeper protein domains select distinct monomers to be activated and incorporated with positional specificity into the growing natural product chains. Chain growth is via thioclaisen condensations for PK and via amide bond formation for elongating NRP chains. Release of the full length acyl/peptidyl chains is mediated by thioesterases, some of which catalyze hydrolysis while others catalyze regiospecific macrocyclization to build in conformational constraints. Tailoring of PK and NRP chains, by acylation, alkylation, glycosylation, and oxidoreduction, occurs both during tethered chain growth and after thioesterase-mediated release. Analysis of the types of protein domains that carry out chain initiation, elongation, tailoring, and termination steps gives insight into how NRP and PK biosynthetic assembly lines can be redirected to make novel molecules.  相似文献   

14.
Fungal polyketide synthase–nonribosomal peptide synthetase (PKS–NRPS) hybrids manufacture a wide range of structurally diverse secondary metabolites that play an eminent role in the environment, as molecular tools and leads for therapeutic development. To date, a dozen PKS–NRPS megasynthetases can be linked to the corresponding secondary metabolites, which stand out because of their structural complexity. The diversity of their structures, biological activities, and biosynthetic routes are particularly intriguing considering the iterative use of the catalytic domains of the biosynthetic enzymes—implying an enigmatic biosynthetic code. This review provides an overview of the characterized fungal PKS–NRPS hybrids, their manifold functionalities, and the diversity of the resulting secondary metabolites, as well as molecular engineering attempts that highly improved the understanding of their cryptic programming.  相似文献   

15.
Tens of thousands of terpenoids are present in both terrestrial and marine plants, as well as fungi. In the last 5-10 years, however, it has become evident that terpenes are also produced by numerous bacteria, especially soil-dwelling Gram-positive organisms such as Streptomyces and other Actinomycetes. Although some microbial terpenes, such as geosmin, the degraded sesquiterpene responsible for the smell of moist soil, the characteristic odor of the earth itself, have been known for over 100 years, few terpenoids have been identified by classical structure- or activity-guided screening of bacterial culture extracts. In fact, the majority of cyclic terpenes from bacterial species have only recently been uncovered by the newly developed techniques of "genome mining". In this new paradigm for biochemical discovery, bacterial genome sequences are first analyzed with powerful bioinformatic tools, such as the BLASTP program or Profile Hidden Markov models, to screen for and identify conserved protein sequences harboring a characteristic set of universally conserved functional domains typical of all terpene synthases. Of particular importance is the presence of variants of two universally conserved domains, the aspartate-rich DDXX(D/E) motif and the NSE/DTE triad, (N/D)DXX(S/T)XX(K/R)(D/E). Both domains have been implicated in the binding of the essential divalent cation, typically Mg(2+), that is required for cyclization of the universal acyclic terpene precursors, such as farnesyl and geranyl diphosphate. The low level of overall sequence similarity among terpene synthases, however, has so far precluded any simple correlation of protein sequence with the structure of the cyclized terpene product. The actual biochemical function of a cryptic bacterial (or indeed any) terpene synthase must therefore be determined by direct experiment. Two common approaches are (i) incubation of the expressed recombinant protein with acyclic allylic diphosphate substrates and identification of the resultant terpene hydrocarbon or alcohol and (ii) in vivo expression in engineered bacterial hosts that can support the production of terpene metabolites. One of the most attractive features of the coordinated application of genome mining and biochemical characterization is that the discovery of natural products is directly coupled to the simultaneous discovery and exploitation of the responsible biosynthetic genes and enzymes. Bacterial genome mining has proved highly rewarding scientifically, already uncovering more than a dozen newly identified cyclic terpenes (many of them unique to bacteria), as well as several novel cyclization mechanisms. Moreover, bioinformatic analysis has identified more than 120 presumptive genes for bacterial terpene synthases that are now ripe for exploration. In this Account, we review a particularly rich vein we have mined in the genomes of two model Actinomycetes, Streptomyces coelicolor and Streptomyces avermitilis, from which the entire set of terpenoid biosynthetic genes and pathways have now been elucidated. In addition, studies of terpenoid biosynthetic gene clusters have revealed a wealth of previously unknown oxidative enzymes, including cytochromes P450, non-heme iron-dependent dioxygenases, and flavin monooxygenases. We have shown that these enzymes catalyze a variety of unusual biochemical reactions, including two-step ketonization of methylene groups, desaturation-epoxidation of secondary methyl groups, and pathway-specific Baeyer-Villiger oxidations of cyclic ketones.  相似文献   

16.
Partially reduced aromatic polyketides are bioactive secondary metabolites or intermediates in the biosynthesis of deoxygenated aromatics. For the antibiotic GTRI-02 (mensalone) in different Streptomyces spp., biosynthesis involving the reduction of a fully aromatized acetyltrihydroxynaphthalene by a naphthol reductase has been proposed and shown in vitro with a fungal enzyme. However, more recently, GTRI-02 has been identified as a product of the ActIII biosynthetic gene cluster from Streptomyces coelicolor A3(2), for which the reduction of a linear polyketide precursor by ActIII ketoreductase, prior to cyclization and aromatization, has been suggested. We have examined three different ketoreductases from bacterial producer strains of GTRI-02 for their ability to reduce mono-, bi-, and tricyclic aromatic substrates. The enzymes reduced 1- and 2-tetralone but not other aromatic substrates. This strongly suggests a reduction of a cyclized but not yet aromatic polyketide intermediate in the biosynthesis of GTRI-02. Implications of the results for the biosynthesis of other secondary polyketidic metabolites are discussed.  相似文献   

17.
郭亮  高聪  张丽  陈修来  刘立明 《化工进展》2021,40(3):1252-1261
微生物细胞工厂以可再生资源为原料,实现了大宗化学品和天然产物的可持续生产,并有望替代石油化工炼制和动植物提取。剪接天然或人工代谢路径是构建微生物细胞工厂的基础。然而,剪接代谢路径造成的代谢流扰动,导致微生物细胞工厂的适配性差,降低了微生物细胞工厂的生产性能。提高人工代谢路径之间的适配性,以及人工代谢路径与底盘微生物细胞之间的适配性,将是改善微生物细胞工厂生产性能的关键。本文从强化与平衡人工代谢路径的代谢通量,解除人工代谢路径与底盘细胞内源代谢路径的交互作用,以及强化人工代谢路径与底盘细胞整体代谢网络的适配性层面,对提高微生物细胞工厂适配性的研究现状进行介绍。开发高效的多重适配性调控策略,在细胞水平重置代谢路径的适配性与提高微生物细胞对代谢产物的适配性,将是未来的研究重点。  相似文献   

18.
Drug discovery often begins with the screening of large compound libraries to identify lead compounds. Recently, the enzymes that are involved in the biosynthesis of natural products have been investigated for their potential to generate new, diverse compound libraries. There have been several approaches toward this end, including altering the substrate specificities of the enzymes involved in natural product biosynthesis and engineering functional communication between enzymes from different biosynthetic pathways. While there exist assays to assess the substrate specificity of enzymes involved in these pathways, there is no simple method for determining whether enzymes from different synthases will function cooperatively to generate the desired product(s). Herein we report a method that provides insight into both substrate specificity and compatibility of protein-protein interactions between the acyl carrier protein (ACP) and ketosynthase (KS) domains involved in fatty acid and polyketide biosynthesis. Our technique uses a one-pot chemoenzymatic method to generate post-translationally modified ACPs that are capable of covalently interacting with KS domains from different biosynthetic systems. The extent of interaction between ACPs and KSs from different systems is easily detected and quantified by a gel-based method. Our results are consistent with previous studies of substrate specificity and ACP-KS binding interactions and provide new insight into unnatural substrate and protein interactions.  相似文献   

19.
近年来,人们对植物的次级代谢过程以及代谢产物进行了研究,并取得了较大的进展,研究表明,可以用基因编码的生物合成酶和基因编码的诱变蛋白来改变不同的合成路径,而且还使用抗敏抑制竞争性路径,依此来提高目标次级代谢产物的产率^[1]。  相似文献   

20.
The important disease Ramularia leaf spot of barley is caused by the fungus Ramularia collo-cygni. The disease causes yield and quality losses as a result of a decrease in photosynthesis efficiency due to the appearance of necrotic spots on the leaf surface. The development of these typical Ramularia leaf spot symptoms is thought to be linked with the release of phytotoxic secondary metabolites called rubellins in the host. However, to date, neither the biosynthetic pathways leading to the production of these metabolites nor their exact role in disease development are known. Using a combined in silico genetic and biochemistry approach, we interrogated the genome of R. collo-cygni to identify a putative rubellin biosynthetic gene cluster. Here we report the identification of a gene cluster containing homologues of genes involved in the biosynthesis of related anthraquinone metabolites in closely related fungi. A putative pathway to rubellin biosynthesis involving the genes located on the candidate cluster is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号