首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meijia Wang 《Polymer》2006,47(7):2548-2554
Tenascin, an important extracellular matrix protein, is subject to stretching force under physiological conditions and plays important roles in regulating the cell-matrix interactions. Using the recently developed single molecule force-ramp spectroscopy, we investigated the unfolding-folding kinetics of a recombinant tenascin fragment TNfnALL. Our results showed that all the 15 FnIII domains in TNfnALL have similar spontaneous unfolding rate constant at zero force, but show great difference in their folding rate constants. Our results demonstrated that single molecule force-ramp spectroscopy is a powerful tool for accurate determination of the kinetic parameters that characterize the unfolding and folding reactions. We anticipate that single molecule force-ramp spectroscopy will become a versatile addition to the single molecule manipulation tool box and greatly expand the scope of single molecule force spectroscopy.  相似文献   

2.
When combined with NMR spectroscopy, high hydrostatic pressure is an alternative perturbation method used to destabilize globular proteins that has proven to be particularly well suited for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations of the unfolding landscape of all-β or mixed-α/β protein scaffolds are well documented, whereas such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at three different temperatures. The results were compared to those obtained from classical chemical denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when using high pressure at high temperature, as was the case for chemical denaturation, whereas it was found more progressive at low temperature, suggesting the existence of a complex folding pathway.  相似文献   

3.
We briefly review our studies on the folding/unfolding mechanisms of proteins. In biological self-assembly processes such as protein folding, the number of accessible translational configurations of water in the system increases greatly, leading to a large gain in the water entropy. The usual view looking at only the water in the close vicinity of the protein surface is capable of elucidating neither the large entropic gain upon apoplastocyanin folding, which has recently been found in a novel experimental study, nor the pressure and cold denaturation. With the emphasis on the translational entropy of water, we are presently constructing a reliable method for predicting the native structure of a protein from its amino-acid sequence.  相似文献   

4.
Multi-scale force spectroscopy was applied to measure unfolding properties and the internal domain structure of Bombyx mori silk fibroin. We demonstrated that the complex multi-domain sequence and block design in this protein can be directly related to multi-stage unfolding behavior of the specific regions through the use of force extension measurements. These new findings suggest relationships between polymer block chemistry and mechanical features, as origins of the remarkable mechanical properties of native silk fibers in general. We observed multiple consequential unfolding of hydrophilic and hydrophobic domains with characteristics that can be directly related to known molecular dimensions of the protein backbones. Future screening and selection approaches can be envisioned to exploit this approach to optimize specific material functional features for both biopolymers and synthetic polymers in relation to sequence chemistry, a capability not currently available.  相似文献   

5.
We study the behavior of two knotted proteins under stretching by a constant force within a coarse-grained structure-based model. One protein, with the structure code 1J85, has a knot that is deep and another, 2ETL, has a knot that is shallow. We demonstrate that tightening of the deep knot may take place before the ultimate end-to-end distance is achieved. However, as with proteins without knots, we observe the existence of a crossover between the low- and high-force regimes of the dependence of the mean unfolding time (as defined through properties of the end-to-end distance) on the applied force. We find little correlation between the unfolding time and the final placement of the tightened knot. We also consider the novel mechanical protection strategy in the single-molecule force spectroscopy of host-guest fusion proteins. We find that it should be useful in studies of guest proteins with knots in the constant-speed mode. However, at constant force, its usefulness is limited if the mechanostability of the host is larger than that of the guest molecule.  相似文献   

6.
The role played by the alpha-helix in determining the structure, the stability and the unfolding mechanism of azurin was addressed by studying a helix-depleted azurin variant produced by site-directed mutagenesis. The protein structure was investigated by CD, 1D (1)H NMR, fluorescence spectroscopy measurements and MD simulations, whilst EPR, UV-visible and cyclic voltammetry experiments were carried out to investigate the geometry and the properties of the Cu(II) site. The effects of the alpha-helix depletion on the thermal stability and the unfolding pathway of the protein were determined by DSC, UV/visible and fluorescence measurements at increasing temperature. The results show that, in the absence of the alpha-helix segment, the overall protein structure is maintained, and that only the Cu site is slightly modified. In contrast, the protein stability is diminished by about 60% with respect to the wild-type azurin. Moreover, the unfolding pathway of the mutant azurin involves the presence of detectable intermediates. In comparison with previous studies concerning other small beta-sheet cupredoxins, the results as a whole support the hypothesis that the presence of the alpha-helix can switch the folding of azurin from a hierarchic to a nonhierarchic mechanism in which the highly conserved beta-sheet core provides a scaffold for cooperative folding of the wild-type protein.  相似文献   

7.
Glycated human serum albumin (gHSA) undergoes conformational changes and unfolding events caused by free radicals. The glycation process results in a reduced ability of albumin to act as an endogenous scavenger and transporter protein in diabetes mellitus type 2 (T2DM) patients. Astaxanthin (ASX) in native form and complexed with metal ions (Cu2+ and Zn2+) has been shown to prevent gHSA from experiencing unfolding events. Furthermore, it improves protein stability of gHSA and human serum albumin (HSA) as it is shown through molecular dynamics studies. In this study, the ASX/ASX-metal ion complexes were reacted with both HSA/gHSA and analyzed with electronic paramagnetic resonance (EPR) spectroscopy, rheology and zeta sizer (particle size and zeta potential) analysis, circular dichroism (CD) spectroscopy and UV-Vis spectrophotometer measurements, as well as molecular electrostatic potential (MEP) and molecular docking calculations. The addition of metal ions to ASX improves its ability to act as an antioxidant and both ASX or ASX-metal ion complexes maintain HSA and gHSA stability while performing their functions.  相似文献   

8.
Adaptation of the techniques of classical physical-organic chemistry to the study of protein folding has led to our current detailed understanding of the transition states. Here, we have applied a series of structure--activity relationships to analyse the effects on protein folding transition states of 2,2,2-trifluoroethanol (TFE), a reagent that is usually assumed to act by stabilising secondary structure. The folding and unfolding of the highly alpha-helical tetramerisation domain of p53 provides a useful paradigm for analysing its effects on kinetics: The first step of its folding consists of an association reaction with little, if any, formation of secondary structure in the transition state; and the final step of the folding reaction involves just the formation of bonds at subunit interfaces, with the alpha-helical structure being completely formed. We have systematically measured the effects of TFE on two sets of structure--activity relationships. The first is for Phi values, which measure the degree of non-covalent bond formation at nearly every position in the transition state. The second is for relative effects of the denaturant, guanidinium chloride, on kinetics and equilibria, which measure the gross position of the transition state on the reaction co-ordinate. We find that TFE modulated the kinetics by a variety of effects other than that on secondary structure. In particular, there were Hammond effects, movement of the position of the transition state along the reaction co-ordinate, which either significantly speeded up or slowed down protein unfolding, depending on the particular mutant examined. The gross effects of TFE on protein folding kinetics are thus not a reliable guide to the structures of transition states.  相似文献   

9.
Antibodies have been increasingly used as pharmaceuticals in clinical treatment. Thermal stability and unfolding process are important properties that must be considered in antibody design. In this paper, the structure-encoded dynamical properties and the unfolding process of the Fab fragment of the phosphocholine-binding antibody McPC603 are investigated by use of the normal mode analysis of Gaussian network model (GNM). Firstly, the temperature factors for the residues of the protein were calculated with GNM and then compared with the experimental measurements. A good result was obtained, which provides the validity for the use of GNM to study the dynamical properties of the protein. Then, with this approach, the mean-square fluctuation (MSF) of the residues, as well as the MSF in the internal distance (MSFID) between all pairwise residues, was calculated to investigate the mobility and flexibility of the protein, respectively. It is found that the mobility and flexibility of the constant regions are higher than those of the variable regions, and the six complementarity-determining regions (CDRs) in the variable regions also exhibit relative large mobility and flexibility. The large amplitude motions of the CDRs are considered to be associated with the immune function of the antibody. In addition, the unfolding process of the protein was simulated by iterative use of the GNM. In our method, only the topology of protein native structure is taken into account, and the protein unfolding process is simulated through breaking the native contacts one by one according to the MSFID values between the residues. It is found that the flexible regions tend to unfold earlier. The sequence of the unfolding events obtained by our method is consistent with the hydrogen-deuterium exchange experimental results. Our studies imply that the unfolding behavior of the Fab fragment of antibody McPc603 is largely determined by the intrinsic dynamics of the protein.  相似文献   

10.
A detailed understanding of the mechanism of unfolding, aggregation, and associated rheological changes is developed in this study for β-Lactoglobulin at different pH values through concomitant measurements utilizing dynamic light scattering (DLS), optical microrheology, Raman spectroscopy, and differential scanning calorimetry (DSC). The diffusion interaction parameter kD emerges as an accurate predictor of colloidal stability for this protein consistent with observed aggregation trends and rheology. Drastic aggregation and gelation were observed at pH 5.5. Under this condition, the protein’s secondary and tertiary structures changed simultaneously. At higher pH (7.0 and 8.5), oligomerizaton with no gel formation occurred. For these solutions, tertiary structure and secondary structure transitions were sequential. The low frequency Raman data, which is a good indicator of hydrogen bonding and structuring in water, has been shown to exhibit a strong correlation with the rheological evolution with temperature. This study has, for the first time, demonstrated that this low frequency Raman data, in conjunction with the DSC endotherm, can be been utilized to deconvolve protein unfolding and aggregation/gelation. These findings can have important implications for the development of protein-based biotherapeutics, where the formulation viscosity, aggregation, and stability strongly affects efficacy or in foods where protein structuring is critical for functional and sensory performance.  相似文献   

11.
By adsorbing bovine serum albumin (BSA) on gold nanoparticles (Aunps) with diameters 30 nm and 80 nm, different degrees of protein unfolding were obtained. Adsorption and adlayer conformation were characterized by UV-vis spectroscopy, ζ-potential measurements, steady-state and time-resolved fluorescence. The unfolding was also studied using 1-anilino-8-naphthalene sulfonate (ANS) as an extrinsic probe, showing that BSA unfolds more on 80 nm Aunp than on 30 nm Aunp. Langmuir monolayer studies using two distinct methods of introducing the BSA and BSA-Aunp constructs accompanied with Brewster Angle Microscopy (BAM) and Digital Video Microscope (DVM) imaging demonstrated that BSA-Aunp constructs induce film miscibility with L-α-phosphatidylethanolamine not seen for BSA or Aunp alone. The changes induced by partial unfolding clearly give better film-penetration ability, as well as disruption of liquid crystalline domains in the film, thereby inducing film miscibility. Gold or protein only does not possess the nanoscale film-affecting properties of the protein-gold constructs, and as such the surface-active and miscibility-affecting characteristics of the BSA-Aunp represent emergent qualities.  相似文献   

12.
Protein fibrillation leads to formation of amyloids—linear aggregates that are hallmarks of many serious diseases, including Alzheimer’s and Parkinson’s diseases. In this work, we investigate the fibrillation of a short peptide (K-peptide) from the amyloidogenic core of hen egg white lysozyme in the presence of dimethyl sulfoxide or urea. During the studies, a variety of spectroscopic methods were used: fluorescence spectroscopy and the Thioflavin T assay, circular dichroism, Fourier-transform infrared spectroscopy, optical density measurements, dynamic light scattering and intrinsic fluorescence. Additionally, the presence of amyloids was confirmed by atomic force microscopy. The obtained results show that the K-peptide is highly prone to form fibrillar aggregates. The measurements also confirm the weak impact of dimethyl sulfoxide on peptide fibrillation and distinct influence of urea. We believe that the K-peptide has higher amyloidogenic propensity than the whole protein, i.e., hen egg white lysozyme, most likely due to the lack of the first step of amyloidogenesis—partial unfolding of the native structure. Urea influences the second step of K-peptide amyloidogenesis, i.e., folding into amyloids.  相似文献   

13.
Bovine beta-lactoglobulin (BLG) variant A has been expressed in the methylotropic yeast Pichia pastoris by fusion of the cDNA to the sequence coding for the alpha-mating factor prepro-leader peptide from Saccharomyces cerevisiae. P. pastoris Mut+ transformants were obtained by single cross-over integration of the BLG-containing vector into the AOX1 locus. In a fed-batch fermenter, a cell density of approximately 300 mg/ml was achieved by controlled glycerol feeding for a total of 24 h. After 72 h of methanol induction, the secreted BLG reached levels of > 1 g/l. The secreted protein could be purified to homogeneity by ion- exchange chromatography. Amino-terminal sequencing of the secreted BLG revealed that the Glu-Ala spacer repeats inserted between the mature protein and the alpha-factor prepro-leader were still present. The purified protein was characterized by a number of methods, including CD spectroscopy, guanidine-HCl unfolding, crystallization and two- dimensional 1H-NMR spectroscopy. By all of these measures, the physical characteristics of recombinant BLG were indistinguishable from those of the native purified bovine BLG, making it useful as a model for protein folding and other biophysical studies.   相似文献   

14.
In most beetles, the hind wings are thin and fragile; when at rest, they are held over the back of the beetle. When the hind wing unfolds, it provides the necessary aerodynamic forces for flight. In this paper, we investigate the hydraulic mechanism of the unfolding process of the hind wings in Dorcus titanus platymelus (Oder: Coleoptera). The wing unfolding process of Dorcus titanus platymelus was examined using high speed camera sequences (400 frames/s), and the hydraulic pressure in the veins was measured with a biological pressure sensor and dynamic signal acquisition and analysis (DSA) during the expansion process. We found that the total time for the release of hydraulic pressure during wing folding is longer than the time required for unfolding. The pressure is proportional to the length of the wings and the body mass of the beetle. A retinal camera was used to investigate the fluid direction. We found that the peak pressures correspond to two main cross-folding joint expansions in the hind wing. These observations strongly suggest that blood pressure facilitates the extension of hind wings during unfolding.  相似文献   

15.
Our understanding of the conformations of proteins and their stability has increased substantially in recent years. A reaction of considerable interest is native (N) ⇌ denatured (D) where N is the globular, native state of the protein which is now well defined as a result of numer-ous structural determinations by X-ray diffraction studies, and D represents unfolded, denatured states of the protein whose structure depends on the denaturant used to promote unfolding. Through experimental studies much is known about the kinetics, thermody-namics, and mechanism of this reaction. For example, it is known that the free energy change for this reaction under physiological conditions, ΔGD, is between 3 and 15 kcal/mol for a fairly wide range of globular proteins. Thus, the globular conformation which is absolutely essential for the biological function is only marginally stable. In addition, these ΔGD values are remarkably sensitive to small changes in the structure of the protein. It has been shown that single amino acid substitutions can dramatically increase or decrease ΔGD values and some substitutions surely lead to unfolding of the polypeptide chain. Most chemical alterations in the structure of a protein, e.g., cleavage of a peptide bond, or modification of an amino acid side chain, lead to decreases, often sizable, in the confor-mational stability. The remarkably low conformational stability of globular proteins is important, in part, because many properties of the protein, e.g., solubility and proteolytic digestibility, change sub-stantially when the protein unfolds. Recent developments in these areas of interest to protein chemists and food scientists are illus-trated and discussed.  相似文献   

16.
We review two-dimensional infrared (2D IR) spectroscopy of the amide I protein backbone vibration. Amide I modes are known for secondary structural sensitivity derived from their protein-wide delocalization. However, amide I FTIR spectra often display little variation for different proteins due to the broad and featureless line shape that arises from different structural motifs. 2D IR offers increased structural resolution by spreading the spectra over a second frequency dimension to reveal two-dimensional line shapes and cross-peaks. In addition, it carries picosecond time resolution, making it an excellent choice for understanding protein dynamics. In 2D IR spectra, cross peaks arise from anharmonic coupling between vibrations. For example, the spectra of ordered antiparallel beta sheets shows a cross peak between the strong nu perpendicular mode at approximately 1620 cm(-1) and the weaker nu parallel mode at approximately 1680 cm(-1). In proteins with beta-sheet content, disorder spreads the cross peaks into ridges, which gives rise to a "Z"-shaped contour profile. 2D IR spectra of alpha helices show a flattened "figure-8" line shape, and random coils give rise to unstructured, diagonally elongated bands. A distinguishing quality of 2D IR is the availability of accurate structure-based models to calculate spectra from atomistic structures and MD simulations. The amide I region is relatively isolated from other protein vibrations, which allows the spectra to be described by coupled anharmonic local amide I vibrations at each peptide unit. One of the most exciting applications of 2D IR is to study protein unfolding dynamics. While 2D IR has been used to study equilibrium structural changes, it has the time resolution to probe all changes resulting from photoinitiated dynamics. Transient 2D IR has been used to probe downhill protein unfolding and hydrogen bond dynamics in peptides. Because 2D IR spectra can be calculated from folding MD simulations, opportunities arise for making rigorous connections. By introduction of isotope labels, amide I 2D IR spectra can probe site-specific structure with picosecond time resolution. This has been used to reveal local information about picosecond fluctuations and disorder in beta hairpins and peptides. Multimode 2D IR spectroscopy has been used to correlate the structure sensitivity of amide I with amide II to report on solvent accessibility and structural stability in proteins.  相似文献   

17.
The amino acid sequence of a protein determines both its final folded structure and the folding mechanism by which this structure is attained. The differences in folding behaviour between homologous proteins provide direct insights into the factors that influence both thermodynamic and kinetic properties. Here, we present a comprehensive thermodynamic and kinetic analysis of three homologous homodimeric four-helix bundle proteins. Previous studies with one member of this family, Rop, revealed that both its folding and unfolding behaviour were interesting and unusual: Rop folds (k(0)(f) = 29 s(-1)) and unfolds (k(0)(u) = 6 x 10(-7) s(-1)) extremely slowly for a protein of its size that contains neither prolines nor disulphides in its folded structure. The homologues we discuss have significantly different stabilities and rates of folding and unfolding. However, the rate of protein folding directly correlates with stability for these homologous proteins: proteins with higher stability fold faster. Moreover, in spite of possessing differing thermodynamic and kinetic properties, the proteins all share a similar folding and unfolding mechanism. We discuss the properties of these naturally occurring Rop homologues in relation to previously characterized designed variants of Rop.  相似文献   

18.
We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature.  相似文献   

19.
Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of α-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods.  相似文献   

20.
Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号