首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of 10B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying 10B to the tumor cells. This study represents the first example of using 2′-F-RNA aptamer GL44 specific to the human glioblastoma U-87 MG cells as a boron delivery agent for BNCT. The closo-dodecaborate residue was attached to the 5′-end of the aptamer, which was also labeled by the fluorophore at the 3′-end. The resulting bifunctional conjugate showed effective and specific internalization into U-87 MG cells and low toxicity. After incubation with the conjugate, the cells were irradiated by epithermal neutrons on the Budker Institute of Nuclear Physics neutron source. Evaluation of the cell proliferation by real-time cell monitoring and the clonogenic test revealed that boron-loaded aptamer decreased specifically the viability of U-87 MG cells to the extent comparable to that of 10B-boronophenylalanine taken as a control. Therefore, we have demonstrated a proof of principle of employing aptamers for targeted delivery of boron-10 isotope in BNCT. Considering their specificity, ease of synthesis, and large toolkit of chemical approaches for high boron-loading, aptamers provide a promising basis for engineering novel BNCT agents.  相似文献   

2.
We developed new 10B carriers for boron neutron capture therapy (BNCT) that can effectively transport and accumulate boron clusters into cells. These carriers consist of a lipopeptide, mercaptoundecahydrododecaborate (BSH), and a disulfide linker. The carriers were conceived according to the structure of pepducin, a membrane-penetrating lipopeptide targeting protease-activated receptor 1 (PAR1). To improve the membrane permeability of BSH, the structure was optimized using various lipopeptides possessing different peptides and lipid moieties. These synthesized lipopeptides were conjugated with BSH and evaluated for intracellular uptake using T98G glioblastoma cells. Among them, the most effectively incorporated and accumulated in the cells was compound 5 a , which contains a peptide of 13 residues derived from the intracellular third loop of PAR1 and a palmitoyl group. For further improvement of 10B accumulation in cells, the introduction of an amine linker was investigated; intracellular uptake similar to that of 5 a was observed for compound 14 , which has a piperazine linker. Both compounds 5 a and 14 showed a stronger radiosensitizing effect than BSH along on T98G cells under mixed-neutron beam irradiation. The results demonstrate that lipopeptide conjugation is effective for enhancing intracellular delivery and accumulation of BSH and improving the cytotoxic effect of BNCT.  相似文献   

3.
This study aimed to develop a novel magnetic resonance imaging (MRI)-detectable boron (B)-containing nanoassemblies and evaluate their potential for boron neutron capture therapy (BNCT). Starting from the citrate-coated gold nanoparticles (AuNPs) (23.9 ± 10.2 nm), the diameter of poly (D, L-lactide-co-glycolide) AuNPs (PLGA-AuNPs) increased approximately 110 nm after the encapsulation of the PLGA polymer. Among various B drugs, the self-produced B cages had the highest loading efficiency. The average diameter of gadolinium (Gd)- and B-loaded NPs (PLGA-Gd/B-AuNPs) was 160.6 ± 50.6 nm with a B encapsulation efficiency of 28.7 ± 2.3%. In vitro MR images showed that the signal intensity of PLGA-Gd/B-AuNPs in T1-weighted images was proportional to its Gd concentration, and there exists a significantly positive relationship between Gd and B concentrations (R2 = 0.74, p < 0.005). The hyperintensity of either 250 ± 50 mm3 (larger) or 100 ± 50 mm3 (smaller) N87 xenograft was clearly visualized at 1 h after intravenous injection of PLGA-Gd/B-AuNPs. However, PLGA-Gd/B-AuNPs stayed at the periphery of the larger xenograft while located near the center of the smaller one. The tumor-to-muscle ratios of B content, determined by inductively coupled plasma mass spectrometry, in smaller- and larger-sized tumors were 4.17 ± 1.42 and 1.99 ± 0.55, respectively. In summary, we successfully developed theranostic B- and Gd-containing AuNPs for BNCT in this study.  相似文献   

4.
Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of 10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.  相似文献   

5.
Peptidic ligands selectively targeting distinct G protein‐coupled receptors that are highly expressed in tumor tissue represent a promising approach in drug delivery. Receptor‐preferring analogues of neuropeptide Y (NPY) bind and activate the human Y1 receptor subtype (hY1 receptor), which is found in 90 % of breast cancer tissue and in all breast‐cancer‐derived metastases. Herein, novel highly boron‐loaded Y1‐receptor‐preferring peptide analogues are described as smart shuttle systems for carbaboranes as 10B‐containing moieties. Various positions in the peptide were screened for their susceptibility to carbaborane modification, and the most promising positions were chosen to create a multi‐carbaborane peptide containing 30 boron atoms per peptide with excellent activation and internalization patterns at the hY1 receptor. Boron uptake studies by inductively coupled plasma mass spectrometry revealed successful uptake of the multi‐carbaborane peptide into hY1‐receptor‐expressing cells, exceeding the required amount of 109 boron atoms per cell. This result demonstrates that the NPY/hY receptor system can act as an effective transport system for boron‐containing moieties.  相似文献   

6.
Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2′-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma–atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2′-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3′- or at the 5′-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3′-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2′-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.  相似文献   

7.
Based on the previously reported potent and selective sulfone hydroxamate inhibitors SC-76276, SC-78080 (SD-2590), and SC-77964, potent MMP inhibitors have been designed and synthesized to append a boron-rich carborane cluster by employing click chemistry to target tumor cells that are known to upregulate gelatinases. Docking against MMP-2 suggests binding involving the hydroxamate zinc-binding group, key H-bonds by the sulfone moiety with the peptide backbone residues Leu82 and Leu83, and a hydrophobic interaction with the deep P1’ pocket. The more potent of the two triazole regioisomers exhibits an IC50 of 3.7 nM versus MMP-2 and IC50 of 46 nM versus MMP-9.  相似文献   

8.
In this article, a novel method of simultaneous carborane- and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for further immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet–visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, morphology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above.  相似文献   

9.
Mesoporous silica nanomaterials have emerged as promising vehicles in controlled drug delivery systems due to their ability to selectively transport, protect, and release pharmaceuticals in a controlled and sustained manner. One drawback of these drug delivery systems is their preparation procedure that usually requires several steps including the removal of the structure-directing agent (surfactant) and the later loading of the drug into the porous structure. Herein, we describe the preparation of mesoporous silica nanoparticles, as drug delivery systems from structure-directing agents based on the kidney-protector drug cilastatin in a simple, fast, and one-step process. The concept of drug-structure-directing agent (DSDA) allows the use of lipidic derivatives of cilastatin to direct the successful formation of mesoporous silica nanoparticles (MSNs). The inherent pharmacological activity of the surfactant DSDA cilastatin-based template permits that the MSNs can be directly employed as drug delivery nanocarriers, without the need of extra steps. MSNs thus synthesized have shown good sphericity and remarkable textural properties. The size of the nanoparticles can be adjusted by simply selecting the stirring speed, time, and aging temperature during the synthesis procedure. Moreover, the release experiments performed on these materials afforded a slow and sustained drug release over several days, which illustrates the MSNs potential utility as drug delivery system for the cilastatin cargo kidney protector. While most nanotechnology strategies focused on combating the different illnesses this methodology emphasizes on reducing the kidney toxicity associated to cancer chemotherapy.  相似文献   

10.
11.
In accordance with the World Cancer Report, cancer has become the leading cause of mortality worldwide, and various therapeutic strategies have been developed at the same time. In the present study, biocompatible magnetic nanoparticles were designed and synthesized as high-performance photothermal agents for near-infrared light mediated cancer therapy in vitro. Via a facile one-pot solvothermal method, well-defined PEGylated magnetic nanoparticles (PEG–Fe3O4) were prepared with cheap inhesion as a first step. Due to the successful coating of PEG molecules on the surface of PEG–Fe3O4, these nanoparticles exhibited excellent dispersibility and dissolvability in physiological condition. Cytotoxicity based on MTT assays indicated these nanoparticles revealed high biocompatibility and low toxicity towards both Hela cells and C6 cells. After near-infrared (NIR) laser irradiation, the viabilities of C6 cells were effectively suppressed when incubated with the NIR laser activated PEG–Fe3O4. In addition, detailed photothermal anti-cancer efficacy was evaluated via visual microscope images, demonstrating that our PEG–Fe3O4 were promising for photothermal therapy of cancer cells.  相似文献   

12.
The synthesis of a new ortho-carborane derivative, tetracarboranylketone 4, is reported here. Ketone 4 was prepared from a tetraalkynylated ketone by the addition of decaborane. The keto group was then easily modified to yield the glycosides 17alpha and 18beta, which contain glucose or galactose, respectively, and the nucleotide 13b. In addition to ketone 4, which is acyclic, cyclic ketone 8 was also synthesised. X-ray diffraction analysis of compound 4 indicated the presence of two toluene guest molecules per molecule of the host compound. Furthermore, compound 4 displays a rather low cytotoxicity. These novel products can be used as building blocks to create a new class of biomolecules containing high-density carborane clusters. Such molecules may constitute powerful tools for applications like Boron Neutron Capture Therapy or Energy-Filtering Transmission Electron Microscopy.  相似文献   

13.
Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles have been proposed to increase the lipophilic character of drugs to overcome biological barriers. However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This work provides a metadata analysis of publications concerning the conjugation of cannabidiol with lipids as a suitable approach and as a new delivery system for this drug.  相似文献   

14.
The development of stimulus-responsive photosensitizer delivery systems that carry a high payload of photosensitizers is of great importance in photodynamic therapy. In this study, redox-responsive polysilsesquioxane nanoparticles (PSilQNPs) built by a reverse microemulsion approach using 5,10,15,20-tetrakis(carboxyphenyl) porphyrin (TCPP) silane derivatives as building blocks, were successfully fabricated. The structural properties of TCPP-PSilQNPs were characterized by dynamic light scattering (DLS)/ζ-potential, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The photophysical properties were determined by UV-vis and fluorescence spectroscopy. The quantity of singlet oxygen generated in solution was measured using 1,3-diphenylisobenzofuran. The redox-responsive release of TCPP molecules was successfully demonstrated in solution in the presence of a reducing agent. The internalization of TCPP-PSilQNPs in cancer cells was investigated using laser scanning confocal microscopy. Phototoxicity experiments in vitro showed that the redox-responsive TCPP-PSilQNPs exhibited an improved phototherapeutic effect on cervical cancer cells compared to a non-responsive TCPP-PSilQNP control material.  相似文献   

15.
Precise editing of the genome of a living body is a goal pursued by scientists in many fields. In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome-editing systems have become a revolutionary toolbox for gene editing across various species. However, the low transfection efficiency of the CRISPR/Cas9 system to mammalian cells in vitro and in vivo is a big obstacle hindering wide and deep application. In this review, recently developed delivery strategies for various CRISPR/Cas9 formulations and their applications in treating gene-related diseases are briefly summarized. This review should inspire others to explore more efficient strategies for CRISPR system delivery and gene therapy.  相似文献   

16.
以稀土硝酸盐-乙二醇-硝酸混合溶液为前驱体,通过一步水热法合成无机/有机复合中空纳米粒子PEG@Gd2O3:Tb,对样品进行了表征,研究了其药物缓释性能. 结果表明,所得纳米粒子具有无机/有机复合中空结构,直径约200 nm,球壁厚度约20 nm,经800℃高温处理后为立方相的Gd2O3. 载药后的杂化中空纳米粒子比纯Gd2O3的释药速率更低,药物持续释放时间可达24 h,载药量为261.5 mg/g. 复合中空纳米粒子综合了无机纳米粒子的刚性和有机物质的韧性及生物相容性,拓展了空心球的潜在应用价值,在载药方面具有应用潜力.  相似文献   

17.
The following research aims at the synthesis of magnetite nanoparticles functionalized with triazine-based dendrons and the application of the obtained materials as effective sorptive materials dedicated to acidic bioactive compounds. The adopted synthetic approach involved: (1) the synthesis of nanosized Fe3O4 particles via classic co-precipitation method, (2) the introduction of amine groups on their surface leading to materials’ precursor, and (3) the final synthesis of branched triazine-based dendrons on the support surface by an iterative reaction between cyanuric chloride (CC) and piperazine (p) or diethylenetriamine (DETA) via nucleophilic substitution. The characterized materials were tested for their adsorptive properties towards folic acid, 18β–glycyrrhetinic acid, and vancomycin, showing high adsorption capacities varying in the ranges of 53.33–401.61, 75.82–223.71, and 68.17–132.45 mg g−1, respectively. The formed material–drug complexes were also characterized for the drug-delivery potential, performed as in vitro release studies at pH 2.0 and 7.4, which mimics the physiological conditions. The release profiles showed that the proposed materials are able to deliver up to 95.2% of the drugs within 48 h, which makes them efficient candidates for further biomedical applications.  相似文献   

18.
Understanding the interaction between nanoparticles and immune cells is essential for the evaluation of nanotoxicity and development of nanomedicines. However, to date, there is little data on the membrane microstructure and biochemical changes in nanoparticle-loaded immune cells. In this study, we observed the microstructure of nanoparticle-loaded macrophages and changes in lipid droplets using holotomography analysis. Quantitatively analyzing the refractive index distribution of nanoparticle-loaded macrophages, we identified the interactions between nanoparticles and macrophages. The results showed that, when nanoparticles were phagocytized by macrophages, the number of lipid droplets and cell volume increased. The volume and mass of the lipid droplets slightly increased, owing to the absorption of nanoparticles. Meanwhile, the number of lipid droplets increased more conspicuously than the other factors. Furthermore, alveolar macrophages are involved in the development and progression of asthma. Studies have shown that macrophages play an essential role in the maintenance of asthma-related inflammation and tissue damage, suggesting that macrophage cells may be applied to asthma target delivery strategies. Therefore, we investigated the target delivery efficiency of gold nanoparticle-loaded macrophages at the biodistribution level, using an ovalbumin-induced asthma mouse model. Normal and severe asthma models were selected to determine the difference in the level of inflammation in the lung. Consequently, macrophages had increased mobility in models of severe asthma, compared to those of normal asthma disease. In this regard, the detection of observable differences in nanoparticle-loaded macrophages may be of primary interest, as an essential endpoint analysis for investigating nanomedical applications and immunotheragnostic strategies.  相似文献   

19.
Eye drops represent 90% of all currently used ophthalmic treatments. Only 0.02% of therapeutic molecules contained in eye drops reach the eye anterior chamber despite their high concentration. The tear film efficiently protects the cornea, reducing access to the target. Thereby, the increase in the drug bioavailability and efficiency must come from the mucoadhesion optimization of the drug delivery system. The gold nanoparticles, used as a drug delivery system in this study, already showcased ultrastable and mucoadhesive properties. The goal was to study the gold nanoparticles’ ability to release two specific ophthalmic drugs, flurbiprofen and ketorolac. The parameters of interest were those involving the loading conditions, the gold nanoparticles properties, and the release experimental conditions. The drug release was measured using an in vitro model based on dialysis bags coupled with UV–visible spectroscopy. Gold nanoparticles showed an ability to release different molecules, whether hydrophobic or hydrophilic, in passive or active drug release environments. Based on these preliminary results, gold nanoparticles could represent a promising drug delivery system for ketorolac and flurbiprofen when topically applied through eye drops.  相似文献   

20.
Organic nanomaterials have attracted considerable attention in the area of photodynamic and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability, well-defined chemical structure, and easy functionalization. However, it is still a challenge to develop a single organic molecule that obtains both photothermal and photodynamic effects. In this contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP) with an acceptor–donor–acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative, the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The 1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser (1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for synergistic photodynamic/photothermal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号