首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 178 毫秒
1.
桦甸油页岩的微波干馏特性   总被引:5,自引:0,他引:5  
在自行设计的微波干馏装置上研究了桦甸油页岩、半焦及其混合物在微波场中的升温特性。发现油页岩本身是一种微波弱吸收物质,纯油页岩在微波场中升温能力较差;油页岩热解产物半焦在微波场中升温很快,可以作为油页岩微波干馏的微波吸收剂,将油页岩和半焦的混合物放入微波场中能达到良好的热解效果。实验研究了半焦和油页岩的混合比、微波功率、粒径等因素对微波干馏效果的影响,结果发现,随着半焦比例加大,产油率增加,半焦产率降低;在相同时间内,微波功率越大,产油率和气体损失产率越大,半焦产率降低;油页岩粒径对微波热解影响较小,但当粒径小于0.2mm时实验中出现了较严重的夹带现象。  相似文献   

2.
《应用化工》2022,(9):2031-2036
针对油页岩热解反应过程复杂,产油率低的问题,进行了油页岩的热解机理和反应过程介绍,探讨了材料特性、炉型种类、催化剂类型、热解温度、加热速率和停留时间对热解转化率的影响及其变化规律。研究发现材料特性影响页岩油产率和品质,粒径尺寸适宜范围在1. 23 mm;固体干馏炉比气体干馏炉好,其油页岩利用率和油收率最高可达100%;催化剂由于其独特的性质和结构特点能够加速油页岩的热解,增大油页岩热解转化率,提高页岩油产率;此外,热解温度在5203 mm;固体干馏炉比气体干馏炉好,其油页岩利用率和油收率最高可达100%;催化剂由于其独特的性质和结构特点能够加速油页岩的热解,增大油页岩热解转化率,提高页岩油产率;此外,热解温度在520550℃、加热速率在12550℃、加热速率在1215℃/min和停留时间在2015℃/min和停留时间在2040 min范围内能够提高页岩油产率,改善页岩油的品质。指出了油页岩热解技术发展趋势,以期为我国非常规、战略接替能源的开发利用提供一定的参考。  相似文献   

3.
世界上油页岩储量巨大。油页岩干馏可以生产类似于石油的页岩油,利用油页岩生产页岩油可以缓解石油短缺的问题。目前,我国页岩油的年产量居世界首位,但这种干馏工艺也存在一些弊端:产油率低,产油率仅为60.9%-65%,国外页岩油产率可达90%。因此,有必要对传统油页岩干馏工艺进行优化,提高油页岩的出油率。  相似文献   

4.
针对油页岩热解反应过程复杂,产油率低的问题,进行了油页岩的热解机理和反应过程介绍,探讨了材料特性、炉型种类、催化剂类型、热解温度、加热速率和停留时间对热解转化率的影响及其变化规律。研究发现材料特性影响页岩油产率和品质,粒径尺寸适宜范围在1. 2~3 mm;固体干馏炉比气体干馏炉好,其油页岩利用率和油收率最高可达100%;催化剂由于其独特的性质和结构特点能够加速油页岩的热解,增大油页岩热解转化率,提高页岩油产率;此外,热解温度在520~550℃、加热速率在12~15℃/min和停留时间在20~40 min范围内能够提高页岩油产率,改善页岩油的品质。指出了油页岩热解技术发展趋势,以期为我国非常规、战略接替能源的开发利用提供一定的参考。  相似文献   

5.
大庆油页岩及干馏产物的利用途径分析   总被引:1,自引:0,他引:1  
大庆油页岩的舍油率大部分都在10%以上,具有很好的经济开发价值.对大庆油页岩及其干馏产物性质的实验研究表明,油页岩的机械强度较低,应选择粉末、颗粒干馏炉进行加工处理;页岩油主要由柴油馏分和重油馏分组成,分别可加工成成品油和直接用作燃料油;热解干馏气热值约为17MJ/m3,可以在除作自身干馏所需的热量燃料外,用作城市煤气或工业锅炉的燃料;半焦着火点低,热值约为23 MJ/kg,可作为清洁燃料用于发电或民用;页岩灰的主要组分是氧化钙争氧化硅,可用于生产建筑材料.  相似文献   

6.
油页岩干馏生产页岩油是油页岩的主要加工利用方式。为降低油页岩干馏所需热载气温度,以延长载气预热器使用寿命并实现节能操作,本文向热载气中掺入一定比例氧气,对含氧低温载气情况下的油页岩干馏过程进行了研究。测定了油页岩在含氧气体氛围中热解时的反应器床层升温特性,对气液相产物组成进行了分析并与无氧干馏产物进行了比较。结果表明,含氧低温载气干馏过程能够通过载气中的氧气与油页岩反应产生的热量使油页岩达到其干馏所需要的温度,页岩油收率及其成分与无氧高温载气干馏过程接近、而轻组分含量更高,并且含有更多的具有O—H键和C==O键官能团的化合物。本文研究结果为油页岩干馏生产页岩油提供了一种新的技术方法,具有较好的工业应用前景。  相似文献   

7.
分别介绍了油页岩低温干馏试验、油页岩与页岩灰掺混的干馏试验,结果表明,其他条件相同时,页岩灰与油页岩以4:1比例掺混时,油页岩干馏所产页岩油(凝点10℃,密度0.898 2g/cm3)与油页岩不掺混页岩灰干馏所得页岩油(凝点26℃,密度0.909 6g/cm3)相比,页岩油品质有所提升,有助于后续加工。  相似文献   

8.
为解决油页岩干馏后页岩油中粒径0.2 mm以下粉尘、杂质难分离而影响油品质的问题,试验利用风选选煤系统,对干馏前的油页岩进行风选除尘处理,通过调节风量大小以及更换风选筛网的形式,研究了不同条件下风选试验系统的除尘效果。试验结果表明:油页岩风选除尘试验系统能够完成选煤条件,除尘效率可达91%以上;风选效果因筛选条件不同而有所不同,在本试验条件下,筛网类型为10 mm×10 mm方孔筛,对应风量值为4 767.2 m~3/h时除尘效率达到最大值。  相似文献   

9.
研究了微波场中低变质煤与塑料共热解时微波功率对焦油组成的影响.利用色谱-质谱联用仪(GC-MS)和傅立叶红外光谱仪(FT-IR)对焦油的组成进行了分析表征.结果表明,随着微波功率的增大,热解焦油呈现出轻质化趋势.当功率由480W增加到800W时,焦油中轻质油含量增加13.2%,重质油含量减少24.2%.焦油中烷烃类物质含量增加4.4%,烯烃含量增加9.1%,而芳香烃类物质含量减少14.6%.因此,微波功率对热解后焦油成分具有重要的影响.  相似文献   

10.
《化学工程》2017,(2):26-32
以柳树河油页岩为原料,分别在100℃热风温度和不同的微波功率的干燥条件下进行试验;用Weibull分布函数对油页岩的干燥曲线进行拟合分析,结合尺度参数估算水分有效扩散系数。结果表明:加速干燥阶段脱除的是油页岩颗粒的表面水;前期存在预热过程,温度升高,水分析出很少;随后干燥速率显著增大。恒速阶段析出的也是表面水,受物理脱附作用的影响;功率越大,恒速段时间越短。降速第一阶段主要是大孔隙中水分的脱除,降速第二阶段主要是中孔和微孔中水分的汽化。临界水分比随功率的增加而升高。Weibull分布函数准确模拟了油页岩微波干燥曲线;尺度参数α值随功率增加而减小,功率大于550 W后减小幅度降低;微波干燥的形状参数β1,即升速段出现在干燥前期;估算的水分有效扩散系数随功率增加而增大。微波干燥和热风干燥时相比,油页岩颗粒形态并没有发生显著变化。  相似文献   

11.
李文举  曹贵  李波 《硅酸盐通报》2022,41(2):649-656
选取4种热解温度(300 ℃、400 ℃、500 ℃、600 ℃)半焦,通过扫描电镜(SEM)对油页岩半焦的微观结构进行分析,然后采用油页岩半焦等质量(0%、5%、10%、15%、20%、25%)替代水泥,测试标准稠度需水量、胶砂流动度和不同龄期的水泥胶砂的抗折、抗压强度。结果表明:油页岩半焦呈层片状、且表面多孔,随着热解温度的升高,微孔和小孔数量逐渐减少,中、大孔数量增加;掺入油页岩半焦会增加水泥标准稠度需水量,降低胶砂流动度,半焦替换量和水泥标准稠度需水量之间存在较强的线性关系;随着油页岩半焦热解温度的升高,水泥胶砂抗折和抗压强度先增大后减小,在500 ℃时力学性能达到最佳;随着油页岩半焦替换量的增加,水泥胶砂抗折和抗压强度都逐渐降低,当油页岩半焦替换量为15%时,500 ℃热解半焦水泥胶砂56 d力学性能与P·Ⅰ 42.5基准水泥胶砂接近。  相似文献   

12.
利用微波化学试验装置研究了油页岩微波热解过程中挥发分析出特性, 考察了微波功率、热解温度、不同热解温度阶段和催化剂对气体组成的影响。结果表明:微波加热能够提高油页岩热解气中H2、CO和C2H4的析出, 降低CO2的析出;50%(1600W)微波功率时烃类的析出量最大;在150~350℃的低温阶段热解气的析出量大, 主要由吸附气体的释放, 不稳定支链和基团的分解产生;温度升高, 气态产物的析出主要由脱氢、芳构化、缩聚和自由基反应产生。催化剂促进了气体的析出, 但不同类型催化剂对油页岩热解气组成的影响不同, 分子筛的吸附作用促进二次分解和缩聚反应;黏土类催化剂在质子酸作用下促进有机质催化裂解加氢反应, 加快断链和基团的稳定;金属类催化剂是强吸波性介质, 能够提高升温速率, 促进热解反应, 其次促进氢自由基的产生和转移。  相似文献   

13.
为实现对废旧塑料的资源化利用,本文采用微波裂解法,以废弃聚丙烯(PP)为裂解原料、颗粒状活性炭为吸波材料通过微波共裂解制取可燃裂解气与轻质裂解油。实验研究了不添加催化剂时微波功率对裂解所得裂解气、裂解油和固体碳的影响,以及添加不同种类金属氧化物作为辅助催化剂时对裂解产物的影响,并详细研究了MgO、ZnO的添加量和功率对产物的影响。研究发现,不添加催化剂时裂解气的产率可达40%,其中H2、CH4约占气体总体积的40%,裂解油的产率为40%左右,固体碳的产率为15%左右。裂解油中烷烃、烯烃和单环芳烃三者的总含量可达90%以上,裂解油的相对密度介于0.7~0.8之间,属于轻质裂解油;添加不同金属氧化物后部分金属氧化物可加深PP的裂化程度,其中MgO可显著提高CH4的含量,ZnO可显著提高H2的含量,且金属氧化物可进一步提高裂解油中单环芳烃的含量;结合响应面分析PP的最佳裂解条件为:加入MgO后功率范围在660~720W,催化剂量在0.6~1g;加入ZnO后功率范围在680~740W,催化剂量在0.4~1g。  相似文献   

14.
油页岩半焦热解特性   总被引:4,自引:3,他引:1  
利用热重分析仪对油页岩半焦热解特性进行了研究.综合考虑制取半焦所获得的页岩油品质、半焦成分、发热量和循环流化床设计,认为干馏温度介于500~600℃为宜;干馏度对半焦热解初析温度和低温段热解过程有影响,但对高温段热解影响不明显,高温干馏所制取的半焦其热解过程包含于低温所制取的半焦热解过程中;随升温速率的提高,相同温度下的半焦热解度降低,当升温速率超过40℃•min-1后,升温速率对半焦热解过程影响不大;最后采用Coasts法计算了油页岩半焦热解动力学参数,计算结果可供数值仿真和工程设计参考.  相似文献   

15.
运用Aspen Plus软件,将油页岩定义为常规物流、非常规物流和常规惰性固体物流的混合物流,结合油母质热解机理、总包一级热解动力学模型,建立了油页岩气体热载体干馏炉模型。在干馏炉正常运行温度下,对油页岩中有机质及其热解产物页岩油、热解气体、半焦等物质的质量进行了计算和分析,并对不同温度下有机质及其热解产物的质量进行了计算和分析。模拟结果与干馏炉设计运行参数符合较好,能方便的对不同温度下热解产物的质量进行预测。  相似文献   

16.
黄雷  张玉明  张亮  张晓晨  孙国刚 《化工学报》2017,68(10):3770-3778
采用两段反应器对油页岩热解初级挥发分进行二次催化反应特性研究,考察了第2段反应器内不同的催化载体、反应气氛与停留时间对油气收率及品质的影响。结果表明,在考察的停留时间范围内页岩灰具有相对适中的催化活性来调控热解挥发分产物的二次反应,水蒸气气氛能够进一步提高热解油收率约5%,并能够在一定程度上抑制裂解气体中C2~C3组分的生成。页岩灰作为催化载体能够转化热解油中VGO(馏程>350℃)等重质组分,随停留时间增加油品馏程向轻组分转移。油品组分GC-MS结果表明,较短停留时间内(<3 s),水蒸气添加能够有效抑制热解油中脂肪烃类的过度裂解,与氮气相比提高汽柴油馏分含量20%以上。过长的停留时间(3~5 s)会造成VGO等馏分缩聚生成焦炭,从而大幅降低热解油收率。  相似文献   

17.
采用热重分析仪和固定床反应器研究了神木烟煤和桦甸油页岩的混合共热解特性及协同作用机制. 结果表明,神木煤与桦甸油页岩混合共热解的失重率高于计算值,表明二者在热解和挥发分逸出过程中存在相互作用,促进了挥发分释放,减少了半焦生成. 煤与油页岩的协同作用可增加热解油收率、降低半焦和水收率. 油页岩与煤质量比为1:1时,所得油收率最高,为9.84%,比计算值提高8.8%. 共热解有助于提高轻质油含量和收率,油页岩与煤质量比为1:4时,轻质油含量超过80%,收率约为7.5%,比计算值分别提高了8%和11.2%,表明添加少量油页岩可明显提高热解油品质. 共热解过程中油页岩产生的富氢组分及自由基能抑制煤热解产生的芳香族化合物的聚合反应,促进芳烃向产物油转化,提高热解油的收率和品质.  相似文献   

18.
油页岩残渣是油页岩热解过程中排放的固体废物,约占油页岩的80%~90%。中国油页岩残渣利用率较低,残渣堆积量日益增多,后续问题十分突出。煤系油页岩残渣的资源化利用成为油页岩热解提油产业发展的瓶颈。介绍了油页岩热解加工利用现状及其残渣在废水处理和废气吸附方面的应用,分析了当前页岩热解残渣利用过程中存在利用方式单一的问题,并结合油页岩热解残渣结构和组成的特殊性,提出了油页岩残渣用作环保材料如吸附剂的发展方向。  相似文献   

19.
生物质协助低阶粉煤微波热解可改善热解产物的分布和特性,尤其是油气收率和品质。采用四因素四水平正交实验法研究了微波功率(420 W,280 W,700 W,560 W)、热解时间(30min,20min,10min,40min)、玉米芯粒径(0.250mm~0.420mm,0.177mm~0.250mm,0.841mm~1.680mm,0.420mm~0.841mm)和玉米芯添加量(10%,40%,30%,20%,质量分数)对低阶粉煤与玉米芯微波共热解中焦油收率的影响,对比分析了低阶粉煤、玉米芯单独微波热解和微波共热解的升温特性和产物特性。结果表明:影响焦油收率由主到次的因素分别为玉米芯添加量、微波功率、玉米芯粒径、热解时间。在本实验参数范围内,正交实验得到的最佳工艺条件为:微波功率700W、热解时间40min、玉米芯粒径0.841mm~1.68mm、玉米芯添加量40%,此时的半焦和气体产物收率分别为51.22%和32.17%,焦油收率达到最大,为8.85%。与低阶粉煤单独微波热解相比,微波共热解生成的焦油中轻油含量提高了11.89%,而杂原子化合物含量降低了7.09%,实现了热解焦油的轻质化和高品质化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号