首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have studied the detailed structure and mechanical properties of the Nb2O5 and Ta2O5 pentoxides after ultrarapid quenching in comparison with the properties of Nb2O5 and Ta2O5 ceramics prepared by a conventional ceramic processing technique and using high-intensity light (HIL) in an optical furnace. The results demonstrate that high-energy processing (HIL and ultrarapid quenching) improves the hardness and strength of Nb2O5 and Ta2O5. At the same time, HIL processing and quenching lead to structural disordering of the Nb2O5 and Ta2O5 pentoxides.  相似文献   

2.
Varistors are electronic materials with nonohmic behavior. In traditional SnO2 varistors, CoO acts as a densifying agent, Nb2O5 increases the electrical conductivity of SnO2 grains, and Cr2O3 produces a more uniform microstructure and acts as an oxygen retaining agent at the grain boundaries. The present work involved a systematic study of the substitution of Nb2O5 for Sb2O3 in the composition of a ternary varistor system. The compositions were prepared by conventional wet ceramic processing using deionized water, and the resulting slips were dried by spray-drying. Pellets were produced under a pressure of 330 MPa and sintered at 1,350 °C for 2 h. Similar to the behavior of Nb2O5, increasing the concentration of Sb2O3 reduced the nonlinear behavior of the ceramic and its breakdown electric field while increasing its leakage current. The samples’ microstructure showed greater porosity, suggesting that higher concentrations of Sb2O3 reduce the sintering rate, probably in response to the higher concentration of tin vacancies in the structure.  相似文献   

3.
Polymer/Sr2ZnSi2O7 (SZS) ceramic composites suitable for substrate applications have been developed using the polymers polystyrene (PS), high density polyethylene (HDPE) and Di-Glycidyl Ether of Bisphenol A (DGEBA). The dielectric, thermal and mechanical properties of the composites are investigated as a function of various concentrations of the ceramic filler. The obtained values of relative permittivity, dielectric loss tangent, thermal conductivity and coefficient of thermal expansion of the composites are compared with the corresponding theoretical predictions. The relative permittivity of the polymer/ceramic composites increases with filler loading. The dielectric loss tangent also shows the same trend except for DGEBA/SZS composites. The major advantages of the ceramic loading are improvement in thermal conductivity and a decrease in the coefficient of thermal expansion. The tensile strength of the composites decreases with increase in filler content, whereas an improvement is observed in microhardness. The variation of relative permittivity (at 1 MHz) of the composites is also studied as a function of temperature.  相似文献   

4.
Modern electronics expect functional materials that are eco-friendly and are obtained with lower energy consumption technological processes. The multiferroic lead-free BaFe1/2Nb1/2O3 (BFN) ceramic powder has been prepared by mechanochemical synthesis from simple oxides at room temperature. The development of the synthesis has been monitored by XRD and SEM investigations, after different milling periods. The obtained powders contain large agglomerates built by crystals with an estimated size about 12–20 nm depending on the period of milling. From this powder, the multiferroic BFN ceramic samples have been prepared by uniaxial pressing and subsequent sintering pressureless method. The morphology of the BFN ceramic samples strongly depends on high-energy milling duration. The properties of the ceramic samples have been investigated by dielectric spectroscopy, in broad temperature and frequency ranges. The high-energy milling of the powders has strongly affected the dielectric permittivity and dielectric loss of the BaFe1/2Nb1/2O3 ceramic samples. The usage of the mechanochemical synthesis to obtain the multiferroic lead-free BFN materials reduces the required thermal treatment and simultaneously improves the parameters of the BFN ceramics.  相似文献   

5.
In this work, the effects of Nb2O5 addition on the dielectric properties and phase formation of BaTiO3 were investigated. A core–shell structure was formed for Nb-doped BaTiO3 resulted from a low diffusivity of Nb5+ ions into BaTiO3 when grain growth was inhibited. In the case of 0.3–4.8 mol% Nb2O5 additions, two dielectric constant peaks were observed. The Curie dielectric peak was determined by the ferroelectric-paraelectric transition of grain core, whereas the secondary broad peak at lower temperature was due to strong chemical inhomogeneity in Nb-doped BaTiO3 ceramics. The dielectric constant peak at Curie temperature was markedly depressed with the addition of Nb2O5. On the other hand, the secondary dielectric constant peak was enhanced when sintered above 1280 °C for higher Nb2O5 concentrations (≥1.2 mol%). The Curie temperature was shifted to higher temperatures, whereas the transition temperature corresponding to the secondary peak moved to lower temperatures as increasing the amount of Nb2O5 more than 1.2 mol%. The decrease of this lower transition temperature was assumed to be closely related with the secondary phase formation when Nb concentration greater than 1.2 mol%. From XRD analyses, a large amount of secondary phases was observed when Nb2O5 amount exceeded 1.2 mol%. The coefficients of thermal expansion of Nb-doped BaTiO3 were increased with increasing Nb2O5 contents, resulting in large internal stress between cores and shells. Therefore, the shift of Curie temperature to higher temperatures was attributed to internal stress resulting from the formation of a core–shell structure and a large amount of secondary phase grains.  相似文献   

6.
Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.  相似文献   

7.
A ferroelectric relaxor PbIn0.5Nb0.5O3 (PIN) ceramics has been obtained using a modified ceramic technology, with the sintering stage preceded by compression and shear straining of the synthesized charge in Bridgman anvils. The dimensions of ceramic grains after this pretreatment are spread over a range from 100 to 1250 nm. A comparative investigation of the properties of PIN ceramics obtained using the standard and modified technology showed that the proposed mechanical action at the charge preparation stage can be used for controlled modification of the properties of ferroelectric ceramics.  相似文献   

8.
Nb2O5-modified PZT/ZnO nanowhisker (denoted as PZT/ZnOw–Nb2O5) piezoelectric composites were prepared by a solid state sintering technique. Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of the PZT/ZnOw composites were investigated. With increasing Nb2O5 content, the grain size of the composites was reduced and the fracture mode changed from intergranular to intragranular gradually. Compared with the PZT/ZnOw composites, the dielectric, piezoelectric, and ferroelectric properties of the PZT/ZnOw–Nb2O5 composites were improved significantly, while mechanical properties were enhanced slightly. The optimum electrical and mechanical properties were achieved for the PZT/ZnOw composites modified with 0.75 wt% Nb2O5 sintered at 1150 °C, with dielectric permittivity εr, piezoelectric coefficient d 33, planar electromechanical coupling k p, remnant polarization P r, fracture toughness K IC, and flexural strength σf being on the order of 4930, 600 pC/N, 0.63, 29.2 μC/cm2, 1.56 MPa m1/2 and 130 MPa, respectively. The Nb2O5-modified PZT/ZnOw piezoelectric composites, with comparable electrical properties and improved mechanical properties than those of commercial PZT-5H ceramics, are promising candidates for further applications.  相似文献   

9.
The influences of BaBi2Nb2O9 content on the electrical property and the microstructure of BaTiO3-based materials have been studied. With an increase in BaBi2Nb2O9 content the grain size decreases. All the prepared BaBi2Nb2O9 doping BaTiO3-based thermistors show typical PTC effect. As the amount of BaBi2Nb2O9 added in BaTiO3-based ceramics increases, resistivity appears to exhibit a minimum value. At high BaBi2Nb2O9 content (≥0.0875), the resistivity increased again with increasing BaBi2Nb2O9 content. At a given content of BaBi2Nb2O9, the influence of sintering temperature on the electrical properties of samples has been investigated. A minimum of room temperature resistivity is obtained at the sintering temperature equal to 1,290 °C at a given content of BaBi2Nb2O9.  相似文献   

10.
Dielectric ceramic thin films were fabricated on SiO2 (110) substrates by the radio frequency (RF) magnetron sputtering method using (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 microwave dielectric ceramic as target. The microstructure, components, and morphology of the thin films were investigated thoroughly. The results reveal that the experimental conditions can affect the growth of the thin films significantly. The main phases of the thin films are Ba0.5Sr0.5Nb2O6 and Ba0.27Sr0.75Nb2O5.78, which are of different composition from that of the ceramic target due to Zn loss. The thin films are polycrystalline with high-quality crystalline and are made up of dense rod-like structures. The growth mechanism of the thin films is discussed in particular.  相似文献   

11.
The Ag-K2Nb2O6 nanocomposites are synthesized by a two-step method where the octahedral K2Nb2O6 is initially prepared by solvothermal reaction and then the Ag particles are anchored onto the surface of K2Nb2O6 through the photoreduction of AgNO3. The XRD, SEM, TEM, XPS, DRS are applied to characterize the structure, morphology and optical properties, which confirm that the Ag particles are successfully deposited on the surface of K2Nb2O6. Compared with the pure K2Nb2O6, the Ag modified K2Nb2O6 catalysts show an obvious enhancement catalysis under UV–Vis light, because that could efficiently promote the light absorption and the separation of photoelectrons and holes.  相似文献   

12.
Anisometric and agglomerate-free template particles are important for fabrication of grain-oriented ceramics. In the present work, preparation of acicular KSr2Nb5O15 (KSN) particles was firstly explored in the SrNb2O6–Nb2O5–KCl system by molten salt synthesis (MSS) method. It was found that the molar ratio of SrNb2O6 to Nb2O5, the amount of KCl salt and synthesis time could significantly affect the phase structure and morphology of KSN particles. When calcined at 1,150 °C for 6 h with the molar ratio of SrNb2O6 to Nb2O5 was 1 and the weight ratio of salt to oxide source was 1.50, pure KSN particles with well-developed acicular morphology were successfully obtained in this system. They were agglomerate-free and with proper scale in the size range of 5–30 μm, which made them the ideal templates for fabricating textured ceramics. In addition, some new reaction and growth mechanisms were proposed in this work.  相似文献   

13.
Nb2O5 is known as good promoter for adsorption/desorption kinetics of hydrogen in magnesium hydride. In this article the interaction with hydrogen of bare Nb2O5, the oxidic component of the mixed MgH2/Nb2O5 system, is investigated in various conditions (i.e. employing atomic, molecular and nascent hydrogen). The state of the hydrogen-Nb2O5 system was monitored using various techniques including: X-ray Diffraction, Electron Paramagnetic Resonance, Diffuse Reflectance UV-Vis Spectroscopy, Thermal Desorption Spectroscopy -Mass Spectrometry, Differential Scanning Calorimetry and Thermal Programmed Desorption. Niobium (V) oxide is not at all inert while interacting with hydrogen. This oxide is partially reduced by hydrogen, which is incorporated in the solid and released as both molecular hydrogen and water. This peculiar behaviour, reminiscent of some properties of the bronze family, suggests an active chemical role played by Nb2O5 in the mixed MgH2/Nb2O5 system.  相似文献   

14.
Bi4Ti3.96Nb0.04O12 thin films were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel method and rapid thermal annealing. The effects of Nb-substitution and annealing temperature (500–800°C) on the microstructure and ferroelectric properties of bismuth titanate thin films were investigated. X-ray diffraction analysis reveals that the intensities of (117) peaks are relatively broad and weak at annealing temperatures smaller than 700°C. With the increase of annealing temperature from 500°C to 800°C, the grain size of Bi4Ti3.96Nb0.04O12 thin films increases. The Bi4Ti3.96Nb0.04O12 thin films annealed at 700°C exhibit the highest remanent polarization (2P r), 36 μC/cm2 and lowest coercive field (2E c), 110 kV/cm. The improved ferroelectric properties can be attributed to the substitution of Nb5+ to Ti4+ in Bi4Ti3O12 assisting the elimination of defects such as oxygen vacancy and vacancy complexes.  相似文献   

15.
A new method of doping of spinel nanopowders with LiF sintering additive has been proposed, consisting in its introduction via solution technology, which leads to improved sinterability of the ceramic. The effect of LiF doping on densification behavior, microstructure, and optical and mechanical properties of hot-pressed MgAl2O4 ceramics has been studied. Samples of MgAl2O4 optical ceramics with density close to that theoretically achievable have been produced by hot pressing of 0.5 wt % LiF-doped nanopowders at 1600°C for 1 h. It has been shown that addition of LiF changes crack propagation in spinel ceramic from transgranular to intergranular.  相似文献   

16.
Three-dimensional (3D) diamond structure electromagnetic band gap (EBG) structures containing high-K Bi(Nb0.992V0.008)O4 (BVN) ceramic, fabricated by rapid-prototyping (RP) and gel casting methods, were investigated. The simulations based on finite element method (FEM) were employed to model the band structures. High-K Bi(Nb0.992V0.008)O4 ceramic was made into gel to cast into the diamond structure molds fabricated by rapid-prototyping method. Then the green bodies were sintered at 900 °C to obtain well densified EBG samples. The transmission characteristics of the EBG structures were measured by transmission/reflection (T/R) methods using a vector network analyzer. Wide complete band gap was observed in the transmission characteristics from 10.08 to 12.59 GHz and it agreed well with the simulation results, which was from 10 to 12.19 GHz.  相似文献   

17.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

18.
Ceramic samples based on ZnTa2O6 and ZnTa2O6–MO2 (M = Ti, Zr) systems have been obtained by the solid state ceramic route. The phase composition and microstructure of samples were investigated. The effect of the aliovalent substitution of ions Zn2+ and Ta5+ by M4+ (M = Ti, Zr) in the structure of ZnTa2O6 on microwave dielectric properties of ceramics was studied. The way of the compensation of the positive temperature coefficient of resonant frequency of dielectric resonators based on ZnTa2O6 ceramics with using the aliovalent substitution of cations was proposed. Dielectric resonators with the high temperature stability of the resonant frequency and high dielectric properties in the microwave range based on the ZnTa2O6–ZrO2 system were obtained for application in electronics.  相似文献   

19.
Pyrochlore-free Pb(Ni1/3Nb2/3)O3 perovskite ceramics produced by a simple and effective reaction-sintering process were investigated. Without any calcination, the mixture of PbO, Ni(NO3)2 and Nb2O5 was pressed and sintered directly into PNN ceramics. Density of 98.5% of theoretical value was obtained after sintered at 1230 °C for 2 h in air. 99.3% of theoretical density was obtained after sintered at 1,200 °C for 2 h in PbO compensated atmosphere. PNN ceramic with dielectric constant 1,680 at 25 °C and 1 kHz has been obtained.  相似文献   

20.
The low thermal expansion ceramic system, Ca1-xSr{x}Zr4P6O24, for the compositions with x = 0, 0.25, 0.50, 0.75 and 1 was synthesized by solid-state reaction. The sintering characteristics were ascertained by bulk density measurements. The fracture surface microstructure examined by scanning electron microscopy showed the average grain size of 2.47 μm for all the compositions. The thermal expansion data for these ceramic systems over the temperature range 25–800°C is reported. The sinterability of various solid solutions and the hysteresis in dilatometric behaviour are shown to be related to the crystallographic thermal expansion anisotropy. A steady increase in the amount of porosity and critical grain size with increase in x is suggested to explain the observed decrease in the hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号