首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
增强尼龙中玻纤长度及其分布对性能的影响   总被引:2,自引:0,他引:2  
以玻纤填充质量分数为30%玻纤增强尼龙6为例,分析和研究了玻璃纤维长度及其分布对增强尼龙6主要性能的影响。结果表明:玻璃纤维的平均长度越长,增强尼龙6的拉伸强度越大,但熔体流动速率下降;玻璃纤维的分布越均匀,缺口悬臂梁冲击强度越大;而弯曲模量与纤维最大长度成正比关系。  相似文献   

2.
短纤维橡胶复合材料结构—性能关系理论研究现状Ⅱ短纤维橡胶复合材料应力传递模式张立群金日光耿海萍瞿雄伟钱百年朱春玲(北京化工大学57#,100029)短纤维复合材料内部应力的传递和分配主要包括拉伸应力、剪切应力、径向应力在纤维、基质、相界面中的分布等内...  相似文献   

3.
使用微滴拉伸试验研究碳纤维、聚乙烯纤维/基体界面的微观力学性能,着重分析树脂微滴端部角大小分别对两种纤维/树脂微滴的界面微观力学行为的影响。发现在不同端部角下,两种纤维/树脂微滴界面的应力分布和应力传递不同。碳纤维/树脂微滴中的残余应力分布呈"W"型、外载拉伸应力分布呈"M"型,界面应力传递效率达到70%;而聚乙烯纤维/树脂微滴中的残余应力分布呈"M"型,外载拉伸应力分布呈"W"型,界面应力传递效率只有13%。根据力学模型得到的相应的剪应力分布都呈反对称分布,在纤维嵌入端存在剪应力集中,且碳纤维所受的剪应力远大于聚乙烯纤维。  相似文献   

4.
应用ANSYS软件对聚甲醛(POM)/乙烯-乙酸乙烯共聚物(EVA)/CaC03拉伸过程中界面应力及其分布进行了数值模拟,以考察相邻的EVA粒子与CaCO3粒子之间的相互作用对界面应力及其分布的影响.EVA粒子与CaCO3粒子之间存在明显的应力集中,尤其是CaCO3粒子靠近EVA粒子的一侧;两粒子的最大剪切应力都偏离了...  相似文献   

5.
单向芳纶/玻璃纤维混杂复合材料板材拉伸性能研究   总被引:3,自引:1,他引:3  
本文对单向芳纶/玻璃纤维复合材料进行制作,对其纵向拉伸强度、拉伸模量和弹性伸长进行实验分析。实验结果表明,单向混杂复合材料的拉伸断裂大多为多次性,界面数越多,一次性断裂的可能性越大。界面数为1的混杂纤维复合材料的芳纶纤维体积含量在对拉伸强度影响上的存在临界值,表现出明显的混杂效应。界面数大于1的混杂复合材料在芳纶纤维铺层数一定的情况下,界面数的多少不影响混杂复合材料拉伸强度和拉伸弹性模量的大小。界面数大于1比界面数为1的复合材料的拉伸强度和拉伸模量明显偏高。同时对不同制作条件下纯玻璃纤维单向复合材料的拉伸性能进行剖析。  相似文献   

6.
环氧基体与竹节状有机纤维之间的界面性能研究   总被引:5,自引:1,他引:4  
本文采用单丝拔出试验和动态力学分析研究了环氧树脂基复合材料中基体与竹节状有机短纤维之间的界面特性.有关的试验结果表明:在弱界面结合的条件下,由于在竹节状有机短纤维中凸节的存在,可以提高纤维与基体之间的界面结合强度,也有利于纤维末端界面剪切应力的传递.  相似文献   

7.
对T300碳纤维增强三维针刺碳纤维增强SiC(C/SiC)复合材料(纤维体积含量为30%)的单调和加载-卸载拉伸载荷下的拉伸行为进行了研究.结果表明:T300碳纤维增强三维针刺C/SiC复合材料的拉伸强度和断裂应变分别为129.6MPa和0.61%.单调和加载-卸载拉伸应力-应变曲线均为非线性变化,主要是复合材料中裂纹的扩展,界面相脱黏和滑移,以及纤维的逐步断裂和拔出所致,使得复合材料在拉伸载荷下呈非脆性破坏.卸载应力水平对卸载后的残余应变和再加载模量有较大影响.卸载应力小于80 MPa时,随着卸载应力的增加,残余应变线性增加,模量线性降低:卸载应力高于80MPa时,二者随着卸载应力的增加而呈二次函数快速变化.  相似文献   

8.
研究了不同线密度PTT/PET复合纤维经过热湿处理前后的形态结构,卷缩特性,卷曲回弹性和拉伸性能变化。结果显示:经过热水热处理后,纤维的卷曲半径明显减小,半径收缩率增大;温度越高,纤维卷曲半径越小,半径收缩率越大。纤维的卷曲收缩率和卷曲模量随着线密度的增加而减小,卷曲稳定度随线密度增加有最大值。纤维的弹性恢复率随线密度的增大而增大,纤维的紧缩伸长率在167 dtex附近有最大值。复合纤维的初始模量随线密度的增加而减小,热处理后的初始模量变小;断裂伸长率随线密度的增加而增大,经热处理后数值增大;断裂强度在热处理前后与线密度关系不大,热处理后断裂强度略有减小。  相似文献   

9.
芳纶、碳纤维混杂工艺对环氧复合材料拉伸性能的影响   总被引:1,自引:0,他引:1  
研究了铺层参数及纤维表面处理对芳纶纤维、碳纤维混杂增强环氧复合材料(简称混杂复合材料)纵向拉伸性能的影响。结果表明,该混杂复合材料的纵向拉伸强度均低于混合定律的预测值,表现出明显的混杂负效应。铺层顺序对材料纵向拉伸强度及断裂伸长率有显著影响,界面数越多,纵向拉伸强度和断裂伸长率越大;界面粘接性能的改善可提高混杂复合材料的拉伸强度和断裂伸长率,但对它的弹性模量没有显著影响。  相似文献   

10.
采用激光拉曼光谱技术研究了聚丙烯腈基炭纤维/环氧树脂微滴的微观力学性能。根据炭纤维应变与G峰拉曼位移之间的关系,使用自制的微加载装置,讨论了微滴在不同应变情况下的层间剪切应力和应力传递效应。实验发现,无论是否受外力,微滴中纤维所受总应力均呈"驼峰"形状分布,界面剪切应力最大值出现在微滴的边缘区域。进一步研究发现,外载作用力影响纤维与树脂基体间的应力传递效应。  相似文献   

11.
The effect of water absorption on the stress transferability across E-glass fiber/nylon 6 interface has been studied using the embedded single fiber composite technique. The behavior of silane coated fiber and untreated fiber composites after periods of water immersion were compared. The silane coating provided both higher interfacial shear stress transferability and protection from permanent water damage in the interphase region. It was found that water absorption in the nylon matrix reduced the shear stress transferability through plasticization of the matrix, weakening of the interface, and the development of tensile swelling stresses at the phase boundaries. In untreated materials the shear stress transferability was limited by decoupling of the matrix from the broken fiber ends by either interface slippage or local plane strain fracture in the interphase region near the fiber end. In the silane treated materials the shear stress transferability was limited by constrained yielding of the polysiloxane/nylon interphase at the fiber end, thus indicating plasticization of the matrix was the primary factor. After 20 days of water immersion, there was permanent deterioration of stress transferability in the untreated samples, but very little permanent damage in the treated samples.  相似文献   

12.
The ultimate tensile strengths of a unidirectional glass-matrix composite were measured as a function of fiber volume fraction. The results were compared with predictions, using a refined solution of the stress field generated by an axisymmetric damage model, which incorporated the effect of stress concentration in the fiber caused by the presence of a matrix crack both before and after deflection at the fiber/matrix interface. Two possible locations for the fiber failure were considered: (1) at a transverse matrix crack, near a bonded fiber/coating interface and (2) at the tip of a debond, at the fiber/coating interface. At low fiber volume fractions, the measured ultimate tensile strength matched the prediction calculated, assuming no crack deflection. For higher volume fractions, the predictions calculated for a debonded crack matched the observed values. The model results were relatively insensitive to debond length and interfacial shear stress for the range of values in this study. In comparison, the global load-sharing model, which does not account for the stress singularity at the fiber/matrix interface, was found to overpredict the values of the ultimate tensile strength for all fiber volume fractions. An important contribution of the present work was to introduce the use of fiber volume fraction as a parameter for testing theoretical predictions of the mode of fiber failure.  相似文献   

13.
The normal and interfacial shear stress distributions with flat fiber tip of short‐fiber‐reinforced rubber matrix sealing composites (SFRC) compared with the shear lag model were investigated by using the finite element method (FEM). The results indicate that stress values do not agree with those calculated by the shear lag model. The effect of different geometrical shapes of fiber tip on the stress distributions of SFRC was also investigated. The geometrical shapes of fiber tip under present investigation are flat, semi‐elliptical, hemispherical, and circular cone, respectively. The results show that the hemispherical fiber tip transfers the load with less stress concentration and is contributed to controlling the interface debonding failure more effectively than other shapes of fiber tip. Further study on the effect of the inhomogeneous interphase properties on the normal and interfacial shear stresses of hemispherical fiber tip was also conducted. The results indicate that the normal stress increases with the increase of the interphase thickness and interfacial shear stress remains unchanged, and the normal stress values of SFRC with interphase are higher than those without interphase. The interphase elastic modulus has no influence on the stress distributions along the direction to the fiber axis. The stress distributions along the radial direction in the interphase end are largely dependent on the interphase elastic modulus, and the interfacial shear stress is larger than the normal stress, which reveals that a significant part of the external load is transferred from the fiber to the matrix through shear stresses within the interphase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41638.  相似文献   

14.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

15.
The effects of some variables, namely, ion concentration, matrix tensile strength, matrix yield strength and the matrix tensile modulus on the fiber‐matrix bonding strength were determined for six ionomers (coded PEA‐1 to PEA‐6) bonded to surface‐modified poly(p‐phenylene terephthalamide) (PPTA) fibers. The results obtained show that the mean bonding shear strength of the ionomers correlates well with both their ultimate tensile strengths and their tensile yield stresses. However, correlation of the bonding shear strengths with the matrix yield stresses reveals that the bonding shear strength was about 1.1 times that of the matrix tensile stress. Failure criteria for all the materials predict maximum shear stress to be either 0.5 or 0.577 of the tensile yield stress, hence a value greater than unity cannot be interpreted nor theoretically justified. It was found that the bonding shear strength of the ethylene‐type ionomer PEA‐6 compared to carboxymethyl surface‐modified PPTA is about 20% lower than the bonding shear strength of this resin against sized PPTA fibers. The reduction of entanglements and/or ionic crosslinking across the bound polymer/bulk polymer interface leads to a weak interface with a subsequent decrease in the measured shear strength.  相似文献   

16.
Sisal-fiber-reinforced composites, as a class of eco-composites, have attracted much attention from materials scientists and engineers in recent years. In this article, the effects of fiber surface treatment on fiber tensile strength and fiber-matrix interface characteristics were determined by using tensile and single fiber pullout tests, respectively. The short beam shear test was also employed to evaluate the interlaminar shear strength of the composite laminates. Vinyl ester, epoxy, and high-density polyethylene (HDPE) were chosen as matrix materials. To enhance the interfacial strength, two kinds of fiber surface-treatment methods, namely, chemical bonding and oxidisation, were used. The results obtained showed that different fiber surface-treatment methods produced different effects on the tensile strength of the sisal fiber and fiber-matrix interfacial bonding characteristics. Hence, valuable information on the interface design of sisal fiber–polymer matrix composites can be obtained from this study.  相似文献   

17.
Sisal-fiber-reinforced composites, as a class of eco-composites, have attracted much attention from materials scientists and engineers in recent years. In this article, the effects of fiber surface treatment on fiber tensile strength and fiber-matrix interface characteristics were determined by using tensile and single fiber pullout tests, respectively. The short beam shear test was also employed to evaluate the interlaminar shear strength of the composite laminates. Vinyl ester, epoxy, and high-density polyethylene (HDPE) were chosen as matrix materials. To enhance the interfacial strength, two kinds of fiber surface-treatment methods, namely, chemical bonding and oxidisation, were used. The results obtained showed that different fiber surface-treatment methods produced different effects on the tensile strength of the sisal fiber and fiber-matrix interfacial bonding characteristics. Hence, valuable information on the interface design of sisal fiber-polymer matrix composites can be obtained from this study.  相似文献   

18.
Acoustic emission (AE) during irreversible deformation in short glass fiber reinforced poly(vinyl chloride) (PVC) composites was studied using a piezoelectric crystal transducer. Compared to the well-coupled composites, many more AE events were observed during tensile deformation in the poorly-coupled composites, presumably due to failure at the fiber-matrix interface. No fiber fracture was detected in the tensile tests for either well-coupled or poorly-coupled composites. Irreversibility of acoustic emission was observed in repeated tensile loading experiments. Unlike PVC, the short fiber composites fractured during stress relaxation at 1 percent elongation. Studies of acoustic emission behavior during stress relaxation indicated that interfacial debonding is a time-dependent process. Relaxation fracture time was strongly increased by chemical coupling at the interface.  相似文献   

19.
The static mechanical responses of two- and three-dimensionally reinforced carbon/carbon composites (2D- and 3D-C/Cs) were compared. The mechanical properties examined included tensile and shear stress-strain (S-S) relations, and fracture behavior using compact tension and double edge notch configurations. Compared with 2D-C/Cs, 3D-C/Cs were shown to possess a similar tensile S-S relation, lower shear strength, higher ultimate deformation in shear, and much higher fracture resistance. The differences in shear and fracture resistance were shown to be derived from a weaker fiber/matrix interface and weaker bonding between fiber bundles in the 3D-C/Cs. These weak interface characteristics of 3D-C/Cs are due to the high value of residual stresses caused by the three-dimensional fiber constraint of 3D-C/Cs.  相似文献   

20.
In discontinuous fiber-reinforced composites, the shear strength at the fiber–matrix interface plays an important role in determining the reinforcing effect. In this paper, a method was devised to accurately determine this shear strength, taking the strength distribution of glass fiber into consideration. Calculated strength values based on the shear strenght obtained by the method were in better agreement with the experimental observations than those calculated by employing the shear strength obtained on the assumption that the fiber strength was uniform. The tensile strength of composites increases with increasing aspect ratio of the reinforcing fibers. This trend is almost the same regardless of the kind of matrix, the nature of interfacial treatment, and the environmental temperature. When composites are reinforced with random-planar orientation of short glass fibers of 1.5 times the mean critical fiber length, the tensile strength of composite reaches about 90% of the theoretical strength of composites reinforced with continuous glass fiber. Reinforcing with glass fibers 5 times the critical length, the tensile strength reaches about 97% of theoretical. However, from a practical point of view, it is adequate to reinforce with short fibers of 1.5–2.0 times the mean critical fiber lenght.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号