首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There has been a recent increase of interest in heterogeneous computing systems, due partly to the fact that a single parallel architecture may not be adequate for exploiting all of a program's available parallelism. In some cases, heterogeneous systems have been shown to produce higher performance for lower cost than a single large machine. However, there has been only limited work on developing techniques and frameworks for partitioning and scheduling applications across the components of a heterogeneous system. In this paper we propose a general model for describing and evaluating heterogeneous systems that considers the degree of uniformity in the processing elements and the communication channels as a measure of the heterogeneity in the system. We also propose a class of dynamic scheduling algorithms for a heterogeneous computing system interconnected with an arbitrary communication network. These algorithms execute a novel optimization technique to dynamically compute schedules based on the potentially non-uniform computation and communication costs on the processors of a heterogeneous system. A unique aspect of these algorithms is that they easily adapt to different task granularities, to dynamically varying processor and system loads, and to systems with varying degrees of heterogeneity. Our simulations are designed to facilitate the evaluation of different scheduling algorithms under varying degrees of heterogeneity. The results show improved performance for our algorithms compared to the performance resulting from existing scheduling techniques.  相似文献   

2.
List scheduling with duplication for heterogeneous computing systems   总被引:2,自引:0,他引:2  
Effective task scheduling is essential for obtaining high performance in heterogeneous computing systems (HCS). However, finding an effective task schedule in HCS, requires the consideration of the heterogeneity of computation and communication. To solve this problem, we present a list scheduling algorithm, called Heterogeneous Earliest Finish with Duplicator (HEFD). As task priority is a key attribute for list scheduling algorithm, this paper presents a new approach for computing their priority which considers the performance difference in target HCS using variance. Another novel idea proposed in this paper is to try to duplicate all parent tasks and get an optimal scheduling solution. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithm HEFD significantly surpasses other three well-known algorithms.  相似文献   

3.
Heterogeneous computing systems are promising computing platforms, since single parallel architecture based systems may not be sufficient to exploit the available parallelism with the running applications. In some cases, heterogeneous distributed computing (HDC) systems can achieve higher performance with lower cost than single-machine supersystems. However, in HDC systems, processors and networks are not failure free and any kind of failure may be critical to the running applications. One way of dealing with such failures is to employ a reliable scheduling algorithm. Unfortunately, most existing scheduling algorithms for precedence constrained tasks in HDC systems do not adequately consider reliability requirements of inter-dependent tasks. In this paper, we design a reliability-driven scheduling architecture that can effectively measure system reliability, based on an optimal reliability communication path search algorithm, and then we introduce reliability priority rank (RRank) to estimate the task’s priority by considering reliability overheads. Furthermore, based on directed acyclic graph (DAG) we propose a reliability-aware scheduling algorithm for precedence constrained tasks, which can achieve high quality of reliability for applications. The comparison studies, based on both randomly generated graphs and the graphs of some real applications, show that our scheduling algorithm outperforms the existing scheduling algorithms in terms of makespan, scheduling length ratio, and reliability. At the same time, the improvement gained by our algorithm increases as the data communication among tasks increases.  相似文献   

4.
Job scheduling plays a critical role in resource utilisation in a grid computing environment. The heterogeneity of grid resources adds some challenges to the work of job scheduling especially when jobs have dependencies which can be represented as Direct Acyclic Graphs (DAGs). Heuristics have been developed for job scheduling optimisation. This paper presents six heuristic enhancements—MMSTFT for minimising both makespan and task finish time, levelU for upward DAG levelling, TMWD for matching tasks with data, Slack for prioritising task scheduling based on slack time, LSlack for levelling the Slack heuristic, and NLPETS for non-levelling of performance effective task scheduling (PETS). The performance of LSlack is amongst the best heuristics evaluated (with BL and LMT). Additionally, heuristic enhancements MMSTS and TMWD can significantly improve the makespan of generated schedules. To facilitate performance evaluation, a DAG simulator is implemented which provides a set of tools for DAG job configuration, execution and monitoring. The components of the DAG simulator are also presented in this paper.  相似文献   

5.
Liang  Bin  Dong  Xiaoshe  Wang  Yufei  Zhang  Xingjun 《The Journal of supercomputing》2020,76(9):7290-7314
The Journal of Supercomputing - As a new type of computing, cloud computing has led to a major computational change. Among many technologies in cloud computing, task scheduling has always been...  相似文献   

6.
The Journal of Supercomputing - Efficient task scheduling is required to attain high performance in both homogeneous and heterogeneous computing systems. An application can be considered as a task...  相似文献   

7.
8.
This work presents a novel parallel micro evolutionary algorithm for scheduling tasks in distributed heterogeneous computing and grid environments. The scheduling problem in heterogeneous environments is NP-hard, so a significant effort has been made in order to develop an efficient method to provide good schedules in reduced execution times. The parallel micro evolutionary algorithm is implemented using MALLBA, a general-purpose library for combinatorial optimization. Efficient numerical results are reported in the experimental analysis performed on both well-known problem instances and large instances that model medium-sized grid environments. The comparative study of traditional methods and evolutionary algorithms shows that the parallel micro evolutionary algorithm achieves a high problem solving efficacy, outperforming previous results already reported in the related literature, and also showing a good scalability behavior when facing high dimension problem instances.  相似文献   

9.
Executing large-scale applications in distributed computing infrastructures (DCI), for example modern Cloud environments, involves optimization of several conflicting objectives such as makespan, reliability, energy, or economic cost. Despite this trend, scheduling in heterogeneous DCIs has been traditionally approached as a single or bi-criteria optimization problem. In this paper, we propose a generic multi-objective optimization framework supported by a list scheduling heuristic for scientific workflows in heterogeneous DCIs. The algorithm approximates the optimal solution by considering user-specified constraints on objectives in a dual strategy: maximizing the distance to the user’s constraints for dominant solutions and minimizing it otherwise. We instantiate the framework and algorithm for a four-objective case study comprising makespan, economic cost, energy consumption, and reliability as optimization goals. We implemented our method as part of the ASKALON environment (Fahringer et al., 2007) for Grid and Cloud computing and demonstrate through extensive real and synthetic simulation experiments that our algorithm outperforms related bi-criteria heuristics while meeting the user constraints most of the time.  相似文献   

10.
Computing systems should be designed to exploit parallelism in order to improve performance. In general, a GPU (Graphics Processing Unit) can provide more parallelism than a CPU (Central Processing Unit), resulting in the wide usage of heterogeneous computing systems that utilize both the CPU and the GPU together. In the heterogeneous computing systems, the efficiency of the scheduling scheme, which selects the device to execute the application between the CPU and the GPU, is one of the most critical factors in determining the performance. This paper proposes a dynamic scheduling scheme for the selection of the device between the CPU and the GPU to execute the application based on the estimated-execution-time information. The proposed scheduling scheme enables the selection between the CPU and the GPU to minimize the completion time, resulting in a better system performance, even though it requires the training period to collect the execution history. According to our simulations, the proposed estimated-execution-time scheduling can improve the utilization of the CPU and the GPU compared to existing scheduling schemes, resulting in reduced execution time and enhanced energy efficiency of heterogeneous computing systems.  相似文献   

11.
12.
Effective task scheduling is essential for obtaining high performance in heterogeneous distributed computing systems (HeDCSs). However, finding an effective task schedule in HeDCSs requires the consideration of both the heterogeneity of processors and high interprocessor communication overhead, which results from non-trivial data movement between tasks scheduled on different processors. In this paper, we present a new high-performance scheduling algorithm, called the longest dynamic critical path (LDCP) algorithm, for HeDCSs with a bounded number of processors. The LDCP algorithm is a list-based scheduling algorithm that uses a new attribute to efficiently select tasks for scheduling in HeDCSs. The efficient selection of tasks enables the LDCP algorithm to generate high-quality task schedules in a heterogeneous computing environment. The performance of the LDCP algorithm is compared to two of the best existing scheduling algorithms for HeDCSs: the HEFT and DLS algorithms. The comparison study shows that the LDCP algorithm outperforms the HEFT and DLS algorithms in terms of schedule length and speedup. Moreover, the improvement in performance obtained by the LDCP algorithm over the HEFT and DLS algorithms increases as the inter-task communication cost increases. Therefore, the LDCP algorithm provides a practical solution for scheduling parallel applications with high communication costs in HeDCSs.  相似文献   

13.
To satisfy the high-performance requirements of application executions, many kinds of task scheduling algorithms have been proposed. Among them, duplication-based scheduling algorithms achieve higher performance compared to others. However, because of their greedy feature, they duplicate parents of each task as long as the finish time can be reduced, which leads to a superfluous consumption of resource. However, a large amount of duplications are unnecessary because slight delay of some uncritical tasks does not affect the overall makespan. Moreover, these redundant duplications would occupy the resources, delay the execution of subsequent tasks, and increase the schedule makespan consequently. In this paper, we propose a novel duplication-based algorithm designed to overcome the above drawbacks. The proposed algorithm is to schedule tasks with the least redundant duplications. An optimizing scheme is introduced to search and remove redundancy for a schedule generated by the proposed algorithm further. Randomly generated directed acyclic graphs and two real-world applications are tested in our experiments. Experimental results show that the proposed algorithm can save up to 15.59  % resource consumption compared with the other algorithms. The makespan has improvement as well.  相似文献   

14.
Code-profiling is the process of determining the types of codes found in a given heterogeneous task. Once this information is available, it is desirable to know how many processors are needed for each of the code types. In this paper, we propose two methods for estimating the minimum number of processors required for each of these code types. The first method involves making use of task compatibility graphs. We show that a task compatibility graph can be generated by analyzing certain compatible relations between task module pairs of a given task flow graph. We define the resource (processor) minimization problem therefore to be equivalent to finding the minimal number of cliques that cover the task compatibility graph, or to finding the minimal number of colors that color the vertices of its complement graph, called task conflict graph. We solve this problem using a greedy approach in O(¦V¦log¦V¦¦E¦) time, where ¦V¦ and ¦E¦ are the number of vertices and edges of the task compatibility graph. We further show that for three special types of task compatibility graphs, optimal solution can be obtained in polynomial time. The second method studied in this paper uses the Cluster-M methodology for estimating the minimum number of processors. Examples are shown to compare the estimated results obtained using different techniques.  相似文献   

15.
In a heterogeneous distributed computing system, machine and network failures are inevitable and can have an adverse effect on applications executing on the system. To reduce the effect of failures on an application executing on a failure-prone system, matching and scheduling algorithms which minimize not only the execution time but also the probability of failure of the application must be devised. However, because of the conflicting requirements, it is not possible to minimize both of the objectives at the same time. Thus, the goal of this paper is to develop matching and scheduling algorithms which account for both the execution time and the reliability of the application. This goal is achieved by modifying an existing matching and scheduling algorithm. The reliability of resources is taken into account using an incremental cost function proposed in this paper and the new algorithm is referred to as the reliable dynamic level scheduling algorithm. The incremental cost function can be defined based on one of the three cost functions developed here. These cost functions are unique in the sense that they are not restricted to tree-based networks and a specific matching and scheduling algorithm. The simulation results confirm that the proposed incremental cost function can be incorporated into matching and scheduling algorithms to produce schedules where the effect of failures of machines and network resources on the execution of the application is reduced and the execution time of the application is minimized as well  相似文献   

16.
For heterogeneous distributed computing systems, important design issues are scalability and system optimization. Given such systems, it is crucial to develop low computational complexity algorithms to schedule tasks in a manner that exploits the heterogeneity of the resources and applications. In this paper, we report and evaluate three scalable, and fast scheduling heuristics for highly heterogeneous distributed computing systems. We conduct a comprehensive performance evaluation study using simulation. The benchmarking outlines the performance of the schedulers, representing scalability, makespan, flowtime, computational complexity, and memory utilization. The set of experimental results shows that our heuristics perform as good as the traditional approaches, for makespan and flowtime, while featuring lower complexity, lower running time, and lower used memory. The experimental results also detail the various scenarios under which certain algorithms excel and fail.  相似文献   

17.
Iterative flattening search (ifs) is a meta-heuristic strategy for solving multi-capacity scheduling problems. Given an initial solution, ifs iteratively applies: (1) a relaxation-step, in which a subset of scheduling decisions are randomly retracted from the current solution; and (2) a flattening-step, in which a new solution is incrementally recomputed from this partial schedule. Whenever a better solution is found, it is retained, and, upon termination, the best solution found during the search is returned. Prior research has shown ifs to be an effective and scalable heuristic procedure for minimizing schedule makespan in multi-capacity resource settings. In this paper we experimentally investigate the impact on ifs performance of algorithmic variants of the flattening step. The variants considered are distinguished by different computational requirements and correspondingly vary in the type and depth of search performed. The analysis is centered around the idea that given a time bound to the overall optimization procedure, the ifs optimization process is driven by two different and contrasting mechanisms: the random sampling performed by iteratively applying the “relaxation/flattening” cycle and the search conducted within the constituent flattening procedure. On one hand, one might expect that efficiency of the flattening process is key: the faster the flattening procedure, the greater the number of iterations (and number of sampled solutions) for a given time bound; and hence the greater the probability of finding better quality solutions. On the other hand, the use of more accurate (and more costly) flattening procedures can increase the probability of obtaining better quality solutions even if their greater computational cost reduces the number of ifs iterations. Comparative results on well-studied benchmark problems are presented that clarify this tradeoff with respect to previously proposed flattening strategies, identify qualitative guidelines for the design of effective ifs procedures, and suggest some new directions for future work in this area.  相似文献   

18.
Energy efficiency is a major concern in modern high performance computing (HPC) systems and a power-aware scheduling approach is a promising way to achieve that. While there are a number of studies in power-aware scheduling by means of dynamic power management (DPM) and/or dynamic voltage and frequency scaling (DVFS) techniques, most of them only consider scheduling at a steady state. However, HPC applications like scientific visualization often need deadline constraints to guarantee timely completion. In this paper we present power-aware scheduling algorithms with deadline constraints for heterogeneous systems. We formulate the problem by extending the traditional multiprocessor scheduling and design approximation algorithms with analysis on the worst-case performance. We also present a pricing scheme for tasks in the way that the price of a task varies as its energy usage as well as largely depending on the tightness of its deadline. Last we extend the proposed algorithm to the control dependence graph and the online case which is more realistic. Through the extensive experiments, we demonstrate that the proposed algorithm achieves near-optimal energy efficiency, on average 16.4% better for synthetic workload and 12.9% better for realistic workload than the EDD (Earliest Due Date)-based algorithm; The extended online algorithm also outperforms the EDF (Earliest Deadline First)-based algorithm with an average up to 26% of energy saving and 22% of deadline satisfaction. It is experimentally shown as well that the pricing scheme provides a flexible trade-off between deadline tightness and price.  相似文献   

19.
Desktop Grids have emerged as an important methodology to harness the idle cycles of millions of participant desktop PCs over the Internet. However, to effectively utilize the resources of a Desktop Grid, it is necessary to use scheduling policies suitable for such systems. In this paper, we analyze the performance of a policy which is shown to perform well in highly heterogeneous Desktop Grids. The policy utilizes the solution to a linear programming (LP) problem which maximizes system capacity. We suggest robust modifications to address several limitations of the policy.  相似文献   

20.
Power efficiency is one of the main challenges in large-scale distributed systems such as datacenters, Grids, and Clouds. One can study the scheduling of applications in such large-scale distributed systems by representing applications as a set of precedence-constrained tasks and modeling them by a Directed Acyclic Graph. In this paper we address the problem of scheduling a set of tasks with precedence constraints on a heterogeneous set of Computing Resources (CRs) with the dual objective of minimizing the overall makespan and reducing the aggregate power consumption of CRs. Most of the related works in this area use Dynamic Voltage and Frequency Scaling (DVFS) approach to achieve these objectives. However, DVFS requires special hardware support that may not be available on all processors in large-scale distributed systems. In contrast, we propose a novel two-phase solution called PASTA that does not require any special hardware support. In its first phase, it uses a novel algorithm to select a subset of available CRs for running an application that can balance between lower overall power consumption of CRs and shorter makespan of application task schedules. In its second phase, it uses a low-complexity power-aware algorithm that creates a schedule for running application tasks on the selected CRs. We show that the overall time complexity of PASTA is $O(p.v^{2})$ where $p$ is the number of CRs and $v$ is the number of tasks. By using simulative experiments on real-world task graphs, we show that the makespan of schedules produced by PASTA are approximately 20 % longer than the ones produced by the well-known HEFT algorithm. However, the schedules produced by PASTA consume nearly 60 % less energy than those produced by HEFT. Empirical experiments on a physical test-bed confirm the power efficiency of PASTA in comparison with HEFT too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号