首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 9 毫秒
1.
Carbon nanotubes (CNTs) are carbon allotropes consisting of one, two, or more concentric rolled graphene layers. These can intrinsically regulate immunity by activating the innate immune system. Mannose receptors (MR), a subgroup of the C-type lectin superfamily, are abundantly expressed on macrophages and dendritic cells. These play a crucial role in identifying pathogens, presenting antigens, and maintaining internal environmental stability. Utilizing the specific recognition between mannose and antigen-presenting cells (APC) surface mannose receptors, the antigen-carrying capacity of mannose-modified CNTs can be improved. Accordingly, here, we synthesized the mannose-modified carbon nanotubes (M-MWCNT) and evaluated them as an antigen delivery system through a series of in vitro and in vivo experiments. In vitro, M-MWCNT carrying large amounts of OVA were rapidly phagocytized by macrophages and promoted macrophage proliferation to facilitate cytokines (IL-1β, IL-6) secretion. In vivo, in mice, M-MWCNT induced the maturation of dendritic cells and increased the levels of antigen-specific antibodies (IgG, IgG1, IgG2a, IgG2b), and cytokines (IFN-γ, IL-6). Taken together, M-MWCNT could induce both humoral and cellular immune responses and thereby can be utilized as an efficient antigen-targeted delivery system.  相似文献   

2.
Autotomy, self-mutilation of a denervated limb, is common in animals after peripheral nerve injury (PNI) and is a reliable proxy for neuropathic pain in humans. Understanding the occurrence and treatment of autotomy remains challenging. The objective of this study was to investigate the occurrence of autotomy in nude and Wistar rats and evaluate the differences in macrophage activation and fiber sensitization contributing to the understanding of autotomy behavior. Autotomy in nude and Wistar rats was observed and evaluated 6 and 12 weeks after sciatic nerve repair surgery. The numbers of macrophages and the types of neurons in the dorsal root ganglion (DRG) between the two groups were compared by immunofluorescence studies. Immunostaining of T cells in the DRG was also assessed. Nude rats engaged in autotomy with less frequency than Wistar rats. Autotomy symptoms were also relatively less severe in nude rats. Immunofluorescence studies revealed increased macrophage accumulation and activation in the DRG of Wistar rats. The percentage of NF200+ neurons was higher at 6 and 12 weeks in Wistar rats compared to nude rats, but the percentage of CGRP+ neurons did not differ between two groups. Additionally, macrophages were concentrated around NF200-labeled A fibers. At 6 and 12 weeks following PNI, CD4+ T cells were not found in the DRG of the two groups. The accumulation and activation of macrophages in the DRG may account for the increased frequency and severity of autotomy in Wistar rats. Our results also suggest that A fiber neurons in the DRG play an important role in autotomy.  相似文献   

3.
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.  相似文献   

4.
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.  相似文献   

5.
The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.  相似文献   

6.
Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model. ahMNCs demonstrate several characteristics associated with neural stem cells (NSCs), including the expression of NSC-specific markers, self-renewal, and multi neural cell lineage differentiation potential. When ahMNCs were transplanted into the lateral ventricle of the SCI animal model, they specifically migrated within 24 h of injection to the damaged spinal cord, where they survived for at least 5 weeks after injection. Although ahMNC transplantation promoted significant locomotor recovery, the injection dose was shown to influence treatment outcomes, with a 1 × 106 (medium) dose of ahMNCs producing significantly better functional recovery than a 3 × 105 (low) dose. There was no significant gain in effect with the 3 × 106 ahMNCs dose. Histological analysis suggested that ahMNCs exert their effects by modulating glial scar formation, neuroprotection, and/or angiogenesis. These data indicate that ahMNCs from patients with hemorrhagic stroke could be used to develop stem cell therapies for SCI and that the indirect injection route could be clinically relevant. Moreover, the optimal transplantation dose of ahMNCs defined in this preclinical study might be helpful in calculating its optimal injection dose for patients with SCI in the future.  相似文献   

7.
Biological mediators secreted during peripheral chronic inflammation reach the bloodstream and may damage the blood–brain barrier (BBB), triggering central nervous system (CNS) disorders. Full-fledged human BBB models are efficient tools to investigate pharmacological pathways and mechanisms of injury at the BBB. We here employed a human in vitro BBB model to investigate the effects of either plasma from inflammatory bowel disease (IBD) patients or tumor necrosis factor α (TNFα), a cytokine commonly released in periphery during IBD, and the anti-inflammatory role of pioglitazone, a peroxisome proliferator-activated receptor γ agonist (PPARγ). The BBB model was treated with either 10% plasma from healthy and IBD donors or 5 ng/mL TNFα, following treatment with 10 µM pioglitazone. Patient plasma did not alter BBB parameters, but TNFα levels in plasma from all donors were associated with varying expression of claudin-5, claudin-3 and ICAM-1. TNFα treatment increased BBB permeability, claudin-5 disarrangement, VCAM-1 and ICAM-1 expression, MCP1 secretion and monocyte transmigration. These effects were attenuated by pioglitazone. Plasma from IBD patients, which evoked higher BBB permeability, also increased ICAM-1 expression, this effect being reversed by pioglitazone. Our findings evidence how pioglitazone controls periphery-elicited BBB inflammation and supports its repurposing for prevention/treating of such inflammatory conditions.  相似文献   

8.
Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials’ degradation was evaluated. The materials under evaluation proved to be biocompatible.  相似文献   

9.
Promising treatments for upper motor neuron disease are emerging in which motor function is restored by brain–computer interfaces and functional electrical stimulation. At present, such technologies and procedures are not applicable to lower motor neuron disease. We propose a novel therapeutic strategy for lower motor neuron disease and injury integrating neural stem cell transplantation with our new functional electrical stimulation control system. In a rat sciatic nerve transection model, we transplanted embryonic spinal neural stem cells into the distal stump of the peripheral nerve to reinnervate denervated muscle, and subsequently demonstrated that highly responsive limb movement similar to that of a healthy limb could be attained with a wirelessly powered two-channel neurostimulator that we developed. This unique technology, which can reinnervate and precisely move previously denervated muscles that were unresponsive to electrical stimulation, contributes to improving the condition of patients suffering from intractable diseases of paralysis and traumatic injury.  相似文献   

10.
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.  相似文献   

11.
Whether or how neural stem cells (NSCs) respond to toll-like receptor 4 (TLR4) in an inflammatory environment caused by traumatic brain injury (TBI) has not been understood. In the present study, association between TLR4 expression and NSCs proliferation in the hippocampus was investigated in a mouse model of TBI using controlled cortical impact (CCI). Hippocampal proliferating cells were labeled with the thymidine analog 5-bromo-2-deoxyuridine (BrdU). In order to identify NSCs, the proliferating cells were further co-labeled with BrdU/sex determination region of Y chromosome related high mobility group box gene 2 (SOX2). Morphological observation on the expression of BrdU, SOX2, and TLR4 in the hippocampus was performed by inmmunofluorescence (IF). Relative quantification of TLR4 expression at the protein and mRNA level was performed using Western blotting and real-time polymerase chain reaction (PCR). It was observed that BrdU+/SOX2+ cells accounted for 95.80% ± 7.91% among BrdU+ cells; several BrdU+ cells and SOX2+ cells in the hippocampus were also TLR4-positive post injury, and that BrdU+ cell numbers, together with TLR4 expression at either protein or mRNA level, increased significantly in TBI mice over 1, 3, 7, 14, and 21 days survivals and changed in a similar temporal pattern with a peak at 3 day post-injury. These results indicate that hippocampal proliferating cells (suggestive of NSCs) expressed TLR4, and that there was a potential association between increased expression of TLR4 and the proliferation of NSCs post TBI. It is concluded that hippocampal TLR4 may play a potential role in endogenous neurogenesis after TBI.  相似文献   

12.
13.
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.  相似文献   

14.
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1–0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号