首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Laminated glass (LG) typically consists of two or more glass plies bonded together with a transparent thermoplastic elastomeric interlayer, often composed of polyvinyl butyral (PVB). This interlayer primarily serves as a means of preventing splintering and of absorbing energy upon blast/impact. This research attempted to enhance the impact resistance of LG by increasing PVB interlayer energy absorption by embedding carbon nanotubes (CNTs). Interlayers were formed by electrospinning aligned PVB fibers mat embedded with various concentrations of CNTs. Subsequently, the fiber mat was hot-pressed between two glass plies forming a composite film. The composite fibers were characterized using optical, SEM, and TEM microscopy. The mechanical and thermo-mechanical properties of fibers were determined by dynamic mechanical analysis (DMA), and the energy absorption capacities of the modified LGs were measured by applying the Charpy impact test of un-notched samples. A ∼ 30% increase in composite fiber (CNT 1.5 wt.%) strength was observed, along with a ∼ 70% increase in elastic modulus, measured at a strain rate of 0.1 min−1, in comparison to CNT-free fibers. Increased CNT loading restricted the segmental motion of polymer macromolecules and provided the geometrical confinement effect to neighboring macromolecules in the nanoscale fiber. The energy absorption of a double-layered LG embedded with carbon nanotubes increased by nearly 341%, where experimental results demonstrated the role of the CNTs pull-out toughening mechanism. In parallel, transmission of visible light decreased by 60%.  相似文献   

2.
In this study, a new high-performance liquid crystal ester-based thermoset for composite applications was investigated. All-aromatic liquid crystalline thermosets (LCTs) are a promising class of polymers that offer a unique combination of properties such as solvent resistivity, high modulus, high strength, low coefficient of thermal expansion and high after cure glass-transition temperatures (Tg ? 150 °C). Fully cured LCTs offer superior thermo-mechanical properties over high-performance thermoplastic polymers such as PPS, PEEK and PEI. For this study we used a 9000 g mol−1 ester-based LCT based on cheap and readily available monomers, i.e. 4-hydroxybenzoic acid (H), isophthalic acid (I) and hydroquinone (Q), abbreviated by us as HIQ-9. Composite panels prepared from T300 carbon fiber (5-harness satin weave) showed in-plane shear strength of 154 MPa and an in-plane shear modulus of 3.7 GPa. The tensile strength and modulus were measured to be 696 MPa and 57 GPa, respectively. A post-mortem inspection showed that the interfacial strength was excellent and no delamination was observed in the test specimen. Preliminary results show that LCT-based composites exhibit a better combination of (thermo) mechanical properties over PPS and PEI-based composites.  相似文献   

3.
The unidirectional boron nitride fibre reinforced boron nitride matrix (BNf/BN) composites were prepared via the precursor infiltration and pyrolysis (PIP) route, and the structure, composition, mechanical and dielectric properties were studied. The composites have a high content and fine crystallinity of BN. The density is 1.60 g cm−3 with a low open porosity of 4.66%. The composites display good mechanical properties with the average flexural strength, elastic modulus and fracture toughness being 53.8 MPa, 20.8 GPa and 6.88 MPa m1/2, respectively. Lots of long fibres pull-out from the fracture surface, suggesting a good fibre/matrix interface. As temperature increases, both of the flexural strength and elastic modulus exhibit a decreasing trend, with the lowest values being 36.2 MPa and 8.6 GPa at 1000 °C, respectively. The desirable residual ratios of the flexural strength and elastic modulus at 1000 °C are 67.3% and 41.3%, respectively. The composites have excellent dielectric properties, with the average dielectric constant and loss tangent being 3.07 and 0.0044 at 2-18 GHz, respectively.  相似文献   

4.
Novel hydroxyapatite (HA)/porous carbon composite scaffolds were prepared by applying sonoelectrodeposition and a subsequent hydrothermal treatment to previous carbonized phenolic resin coated polyurethane sponges. The interconnected pore network and morphology of HA/porous carbon composite scaffolds were determined by scanning electron microscope (SEM), and the whole surface of porous carbons were evenly coated with the deposited HA layer which was confirmed by EDS and XRD. The porosity (83.5 ± 0.3%) and the bulk density (0.297 ± 0.009 g·cm−3) of HA/porous carbon scaffolds were detected by the Archimedes method. The compressive and flexural strength of the scaffolds is 1.187 ± 0.064 MPa and 0.607 ± 0.268 MPa, respectively. Compared with the polymeric surface of 24-well cell culture plates, these novel scaffolds significantly promote the proliferation of human osteoblast-like MG-63 cells, indicating that this novel HA/porous carbon composite scaffold could be used for in vitro 3D culture of osteoblasts.  相似文献   

5.
We report on high mobility ZnO thin film transistors (TFTs) (< 5 V), utilizing a room temperature grown MgO-Bi1.5Zn1.0Nb1.5O7 (BZN) composite gate insulator on a glass substrate. 30 mol% MgO added BZN composite gate insulators exhibited greatly enhanced leakage current characteristics (~< 2 × 10− 8 A/cm2 at 0.3 MV/cm) due to the high breakdown strength of MgO, while retaining an appropriate high-k dielectric constant of 32. The ZnO-TFTs with MgO-BZN composite gate insulators showed a high field-effect mobility of 37.2 cm2/Vs, a reasonable on-off ratio of 1.54 × 105, a subthreshold swing of 460 mV/dec, and a low threshold voltage of 1.7 V.  相似文献   

6.
为改善玻璃纤维增强聚苯硫醚(PPS)复合板材的力学性能,分别以柔性的玻璃纤维布和PPS非织造布作为增强体和基体,采用叠层热压成型法制备出刚性的复合板材,采用力学性能测试、XRD、PLM、SEM研究了热压温度、热压时间、玻璃纤维含量和处理玻璃纤维布的硅烷偶联剂种类对复合板材的力学性能、结晶度、结晶形态和微观形貌的影响。结果表明,在无硅烷偶联剂处理玻璃纤维布时,控制热压温度为320℃,热压时间为30 min,压力为30 MPa,玻璃纤维质量分数为50%,复合板材的拉伸强度和弯曲强度最佳,分别为286.0 MPa和175.0 MPa,缺口冲击强度达到61.6 MPa。使用硅烷偶联剂KH560处理玻璃纤维布,在最佳成型工艺条件下,复合板材力学性能改善最明显,其弯曲强度为394.9 MPa,弯曲模量为23.6 GPa,层间剪切强度为16.4 MPa,缺口冲击强度为81.0 MPa。通过优化实验条件和使用硅烷偶联剂处理玻璃纤维表面,复合板材的力学性能得到了明显提高。  相似文献   

7.
A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K2HPO4 solution by the ratio of 50 g L−1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g−1 if 5 g L−1, <100 μm G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).  相似文献   

8.
The optical properties of boron- and phosphorus-doped polycrystalline silicon films with light (~ 1 × 1016 cm−3), moderate (~ 5 × 1017 cm−3) and heavy doping (~ 1 × 1019 cm−3) were investigated in this work. The films were prepared by solid-phase crystallization of evaporated amorphous silicon films on borosilicate glass. Tauc-Lorentz models with one or two oscillators were used to model both reflection and transmission data collected by a spectrophotometer over the wavelength range of 400 nm-2000 nm. The results indicate that the crystal quality of the films is improved by phosphorus doping, while boron has a negligible impact on the crystal quality. The poly-Si films exhibit greater absorption than c-Si for visible wavelengths. This enhanced absorption is believed to be associated with defected a-Si material at the grain boundaries and intra-grain defects.  相似文献   

9.
The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm− 1, respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm− 1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 × 1016 and 3.1 × 1020 cm− 3, respectively. This report will provide newer applications of ZnO thin films in flexible display technology.  相似文献   

10.
A specific manufacturing process to obtain continuous glass fiber-reinforced PTFE laminates was studied and some of their mechanical properties were evaluated. Young’s modulus and maximum strength were measured by three-point bending test and tensile test using the Digital Image Correlation (DIC) technique. Adhesion tests, thermal analysis and microscopy were used to evaluate the fiber–matrix adhesion, which is very dependent on the sintering time. The composite material obtained had a Young’s modulus of 14.2 GPa and ultimate strength of 165 MPa, which corresponds to approximately 24 times the modulus and six times the ultimate strength of pure PTFE. These results show that the PTFE composite, manufactured under specific conditions, has great potential to provide structural parts with a performance suitable for application in structural components.  相似文献   

11.
Lithium ion conducting glass and glass ceramic of the composition Li1.4[Al0.4Ge1.6(PO4)3], have been synthesized. The monolithic glass pieces on thermal treatment resulted in single-phase glass ceramic with the Nasicon structure. Experiments with different electrodes proved that the lithium electrodes provide accurate values for the ionic conductivity using impedance spectroscopy. σionic of the glass ceramic was found to be 3.8×10−5 S cm−1 at 40°C with an activation energy (Ea) of 0.52 eV. The corresponding values for the glass are 2.7×10−9 S cm−1 and 0.95 eV, respectively. The Arrhenius dependence of σionic with temperature in glass and glass ceramic is interpreted with a hopping mechanism from which the microscopic characteristics of the lithium cation motion are deduced.  相似文献   

12.
A novel carbon fiber knitted fabric reinforced copper (C/C–Cu) composite was fabricated by a pressureless infiltration technique. The microstructure of the composite was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The mechanical, electrical and tribological properties of the C/C–Cu composite were compared with those of a carbon/copper contact strip. The experimental results showed that the C/C–Cu composite formed an interpenetrating network structure. It exhibited a high bending strength of 186 MPa, excellent impact strength of 4.7 J/cm2 and a particularly low electrical resistivity of 0.58 μΩ m, giving it advantages over the C/Cu strip in terms of both mechanical and electrical properties. Friction and wear experiments were conducted for the C/C–Cu composite and the C/Cu strip on a hemisphere pin-on-block apparatus, using cooper pins against polished specimens in dry sliding conditions. It was found that the C/C–Cu composite exhibited greater wear resistance than the C/Cu strip and did less damage to the copper pin.  相似文献   

13.
Cu-(Sn37Pb) and Cu-(Sn3.5Ag0.5Cu) solder joints were prepared at the same reflow temperature of 230 °C. The microstructural observation of the solder assemblies in scanning and transmission electron microscopes confirmed the presence of η-Cu6Sn5 in case of the former, and Cu3Sn + η-Cu6Sn5 for the latter in the reaction zone. The findings are correlated with the electrical and mechanical properties of the joints. Lead free solder-Cu joint exhibited lower reaction zone thickness and improved electrical conductivity (0.28 × 106Ω− 1 cm− 1) and shear strength ∼ 68MPa compared to conventional lead-tin solder-Cu joint. The latter showed electrical conductivity and shear strength of 0.22 × 106Ω− 1 cm− 1 and ∼ 55 MPa, respectively. The difference in reaction zone thickness is explained on the basis of melt superheat, with Sn being the primary diffusing species in the intermetallic layer.  相似文献   

14.
The (Zr48Cu36Al8Ag8)99.25Si0.75-based bulk metallic glass composite (BMGC) rods ex situ dispersed with Ta particles (with a diameter of 2-4 mm) have been successfully fabricated by suction casting and characterized. These Ta-added BMGCs exhibit similar thermal properties in comparison with its base alloy counterpart, with relatively high glass forming ability (GFA). The results of compression test show that a superior mechanical performance with up to 22% compressive plastic strain, 1800 MPa yield strength and 1850 MPa fracture strength at room temperature can be obtained for the 2 mm diameter rod of the ZrCu-based BMGC with 10 vol.% Ta particles. These ex situ dispersed Ta particles (20 ± 8 μm) would arrange as semi-uniform confinement zones to restrict the shear band propagation. In addition, for a given Ta particle size, higher volume fraction particles would lead to more interfacial areas, shorter inter-particle spacings, smaller confinement zone sizes than the smaller volume fraction particles, and results in presenting larger compression plasticity.  相似文献   

15.
A comparative study of the influence of processing route on polyurethanes (PUs)/multiwalled carbon nanotube (MWCNT) composites mechanical and electrical properties and also morphology was undergone employing two differentiated processing methods, solvent casting and buckypaper infiltration, for producing PU composites with low, medium and high mass fractions of acid treated MWCNT, and with no covalent linkages between the matrix and the nanotubes. As for example, with a MWCNT mass fraction of ∼18 wt.% the second method produced stiffer (270 MPa), lighter (948 kg m−3) and more electrically conductive (1.8 S cm−1) composite while the first one gave softer (111 MPa) and more ductile (141%) materials. These properties differences are related to the different PU/MWCNT dispositions obtained through each synthesis route. Nanotubes percolating concentration is found to be crucial on composite properties evolution and a preferential interaction of MWCNT with PU hard segments is observed for solvent cast composites.  相似文献   

16.
Mg67Zn28Ca5 bulk metallic glass reinforced with 0.66-1.5 vol% of nano alumina particulates were successfully synthesized using disintegrated melt deposition technique. Microstructural characterization revealed reasonably uniform distribution of alumina particulates in a metallic glass matrix. The reinforced particles have no significant effect on the glass forming ability of the monolithic glass matrix. Mechanical characterization under compressive loading showed improved micro hardness, fracture strength and failure strain with increase in nano alumina particulate reinforcement. The best combination of strength, hardness and ductility was observed in Mg/1.5 vol% alumina composite with fracture strength of 780 MPa and 2.6% failure strain.  相似文献   

17.
Cracks in glass under triaxial conditions   总被引:1,自引:0,他引:1  
This experimental work documents the mechanical evolution of synthetic glass (SON68) under compressive triaxial stresses (hydrostatic and deviatoric conditions). The experimental setup enabled to monitor and vary independently confining pressure (range: [0, 50] MPa) and axial stress (up to 680 MPa) at room temperature. An optimized set of sensors allowed us to perform measurements during the experiments of: (i) axial and radial deformation, (ii) P- and S-elastic wave velocities, and (iii) acoustic emissions. In addition, in some samples, initial crack densities up to a value of 0.24 were introduced by thermal cracking. We compare the original synthetic glass data set to results obtained in the same experimental conditions on thermally cracked glass and on a basaltic rock with similar petrophysical properties (porosity, chemistry).Stress-strain data depict original linear elastic glass properties even up to an axial stress of 680 MPa (under 15 MPa confining pressure). A strong strength decrease (370 MPa at 15 MPa confining pressure) is observed for thermally cracked samples. Elastic wave velocity data highlight that cracks are mostly closed at a confining pressure of ∼30 MPa. The basaltic rock seems to correspond to an intermediate state between an original and a thermally treated glass. In all samples, damage was accompanied by dynamic crack propagation, producing large magnitude acoustic emissions. Thanks to a continuous recorder, we could locate a number of acoustic emissions in order to image the microcracking pattern evolution prior to failure.  相似文献   

18.
以玻璃纤维布和聚苯硫醚(PPS)非织造布分别作为增强体和树脂基体原料,采用热压成型法制备出玻璃纤维布/PPS非织造布复合板材,然后在烘箱中进行热处理。利用万能试验机(Instron)、XRD、偏光显微镜(PLM)和SEM等手段对玻璃纤维布/PPS非织造布复合板材的力学性能、结晶度、晶粒类型和尺寸及微观形貌等进行了测试和表征。结果表明:随着热处理温度和时间的提高,玻璃纤维布/PPS非织造布复合板材的弯曲强度、弯曲模量和缺口冲击强度得到明显提高。当热处理温度为220℃、热处理时间为2 h时,其力学性能最佳,其弯曲强度、弯曲模量和缺口冲击强度分别达到285.7 MPa、7.8 GPa和85.0 MPa。和未进行热处理的玻璃纤维布/PPS非织造布复合板材相比,分别提高了63.2%、469.0%和37.8%。微观形貌结果表明,玻璃纤维布/PPS非织造布复合板材界面粘结得到了明显改善。  相似文献   

19.
Starch-based biocomposites reinforced with jute (micro-sized fiber) and bacterial cellulose (BC) (nano-sized fiber) were prepared by film casting. Reinforcement in the composites is essentially influenced by fiber nature, and amount of loading. The optimum amount of fiber loading for jute and bacterial cellulose in each composite system are 60 wt% and 50 wt% (of starch weight), respectively. Mechanical properties are largely improved due to the strong hydrogen interaction between the starch matrix and cellulose fiber together with good fiber dispersion and impregnation in these composites revealed by SEM. The composites reinforced with 40 wt% or higher bacterial cellulose contents have markedly superior mechanical properties than those reinforced with jute. Young’s modulus and tensile strength of the optimum 50 wt% bacterial cellulose reinforced composite averaged 2.6 GPa and 58 MPa, respectively. These values are 106-fold and 20-fold more than the pure starch/glycerol film. DMTA revealed that the presence of bacterial cellulose (with optimum loading) significantly enhanced the storage modulus and glass transition temperature of the composite, with a 35 °C increment. Thermal degradation of the bacterial cellulose component occurred at higher temperatures implying improved thermal stability. The composites reinforced with bacterial cellulose also had much better water resistance than those associated with jute. In addition, even at high fiber loading, the composites reinforced by bacterial cellulose clearly retain an exceptional level of optical transparency owing to the effect of the nano-sized fibers and also good interfacial bonding between the matrix and bacterial cellulose.  相似文献   

20.
Long fiber thermoplastic (LFT) composite/metal laminate (LML) is a hybrid composite consisting of alternate layers of metals such as aluminum and an LFT composite, which combines advantages from both the constituents. The LFT/Al laminates (LMLs) were processed by compression molding and were characterized for their Young’s modulus, mechanical strength, and low-velocity impact (LVI) properties. The average values of specific elastic modulus and specific tensile strength were approximately 20 GPa/(gcm−3) and 108.5 MPa/(gcm−3), respectively. Failure mechanisms included delamination between LFT composite and Al, fiber fracture and pullout in LFT composite, and shear fracture of aluminum and LFT composite layers. Rule-of-mixtures (ROM) predictions of laminate properties in tension compared well with the experimental values. Specific perforation energy of the laminates determined by LVI tests was 7.58 J/(kgm−2), which is significantly greater than that of the LFT composite alone, 1.72 J/(kgm−2). Overall, the LML showed significant improvement in the properties as compared to the LFT composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号