首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (approximately 2 microm) and gave off thin (<1 microm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3-300 microm in length, though sometimes as long as 700 microm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1-2 microm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2-4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.  相似文献   

2.
The incidence of septic shock caused by gram-positive bacteria has risen markedly in the last few years. It is largely unclear how gram-positive bacteria (which do not contain endotoxin) cause shock and multiple organ failure. We have discovered recently that two cell wall fragments of the pathogenic gram-positive bacterium Staphylococcus aureus, lipoteichoic acid (LTA) and peptidoglycan (PepG), synergize to cause the induction of nitric oxide (NO) formation, shock, and organ injury in the rat. We report here that a specific fragment of PepG, N-acetylglucosamine-beta-[1--> 4]-N-acetylmuramyl-L-alanine-D-isoglutamine, is the moiety within the PepG polymer responsible for the synergism with LTA (or the cytokine interferon gamma) to induce NO formation in the murine macrophage cell line J774.2. However, this moiety is also present in the PepG of the nonpathogenic bacterium Bacillus subtilis. We have discovered subsequently that S. aureus LTA synergizes with PepG from either bacterium to cause enhanced NO formation, shock, and organ injury in the rat, whereas the LTA from B. subtilis does not synergize with PepG of either bacterium. Thus, we propose that the structure of LTA determines the ability of a particular bacterium to cause shock and multiple organ failure (pathogenicity), while PepG acts to amplify any response induced by LTA.  相似文献   

3.
We constructed delta cya delta crp mutants of two avian septicemic Escherichia coli strains and evaluated their attenuation in virulence. The P1 phage was used to transfer cya::Tn10 from an E. coli K-12 strain into virulent avian O78 and O2 E. coli isolates. Tetracycline-resistant transductants were plated on Bochner-Maloy Medium, and tetracycline-sensitive colonies were selected, then tested by polymerase chain reaction to confirm that they had deletions of the cya gene. Deletions of crp were created by the same technique in isolates with deletions in cya. The delta cya and delta cya delta crp derivatives had slower growth rates, smaller colonies, and impaired fermentation of carbohydrates compared with their wild parents, and they did not revert. Attenuation of the mutant strains was evaluated by subcutaneous (s.c.) inoculation of day-old chicks and by intratracheal (i.t.) inoculation of 9-day-old chicks previously inoculated intranasally with infectious bronchitis virus. For the wild O78 strain and its delta cya and delta cya delta crp derivatives, the percentages of chicks that died within 6 days of s.c. injection of approximately 5 x 10(7) organisms were 100, 60, and 0, respectively. The corresponding percentages for wild-type O2 and its delta cya and delta cya delta crp mutants were 100, 70, and 20 at a dose of approximately 2 x 10(5) organisms. Following i.t. inoculation, group scores based on pathologic and bacteriologic findings were 51%, 15%, and 9% for wild, delta cya, and delta crp O78 strains (inoculum approximately 2 x 10(7) organisms) and 98%, 31%, and 11%, respectively, for the corresponding O2 strains (inoculum approximately 4 x 10(6) organisms). This study demonstrated reduced virulence and stability of the double mutant, which may useful as a live attenuated vaccine against poultry colibacillosis.  相似文献   

4.
Isocitrate lyase from Escherichia coli has been expressed in transformed E. coli JE10 cells lacking the isocitrate lyase (icl) gene. After directed mutagenesis of icl by the restriction-site elimination method, partially purified isocitrate lyase mutants in which His 356 has been converted to Lys, Arg, Gln, Asp, or Leu have been characterized after induction of transformed, induced JE10 cells. Values of kcat compared to those for wild-type (wt) enzyme (100) at 37 degrees C, pH 7.3, are 18, 1, <1, 0, and 0 for H356K, H356R, H356E, H356Q, and H356L mutant enzymes, respectively. Km values for the 1:1 Mg-isocitrate complex (in millimolar units) are: 0.13, wt; 0.11, H356K; and 0.63, H356R. Further chromatographic purification of isocitrate lyase yields highly purified wt, H356K, and H356R enzymes. The pH profile of the stability of isocitrate lyase, which has never been reported, showed that the H356R enzyme was unstable in the pH range investigated; the wt and H356R variant differed but each was sufficiently stable to study the pH dependence of catalysis. The log kcat/pH profiles for highly purified wt and H356K enzymes are roughly bell-shaped and have pKa and pKb values for dissociation of an ionizable group on the enzyme-substrate complex of <6.3 and 8.4 for wt and 5.9 and 7.9 for H356K enzymes. Plots of pKm vs pH were different for the wt and H356K variant. Values of pKa and pKb (derived from log kcat/Km plots vs pH) for the dissociation of an activity-related ionizable group on the variant were 5.3 and 7.6, whereas the analogous pKb value for the wt enzyme was 8.4. The data suggest that His 356 is an important functional residue in isocitrate lyase, perhaps in deprotonating isocitrate during catalytic cleavage.  相似文献   

5.
During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand the numbers and types of genes dependent upon RpoS, we employed a genetic screen to isolate more than 100 independent RpoS-dependent gene fusions from a bank of several thousand mutants harboring random, independent promoter-lacZ operon fusion mutations. Dependence on RpoS varied from 2-fold to over 100-fold. The expression of all fusion mutations was normal in an rpoS/rpoS+ merodiploid (rpoS background transformed with an rpoS-containing plasmid). Surprisingly, the expression of many RpoS-dependent genes was growth phase dependent, albeit at lower levels, even in an rpoS background, suggesting that other growth-phase-dependent regulatory mechanisms, in addition to RpoS, may control postexponential gene expression. These results are consistent with the idea that many growth-phase-regulated functions in Escherichia coli do not require RpoS for expression. The identities of the 10 most highly RpoS-dependent fusions identified in this study were determined by DNA sequence analysis. Three of the mutations mapped to otsA, katE, ecnB, and osmY-genes that have been previously shown by others to be highly RpoS dependent. The six remaining highly-RpoS-dependent fusion mutations were located in other genes, namely, gabP, yhiUV, o371, o381, f186, and o215.  相似文献   

6.
Activated macrophages are among the major constituents of the periapical granuloma. Their state of activation may persist for long periods after the local irritant is removed and may delay resolution and repair of the lesion. The effect of activated macrophages on fibroblast growth was studied in vitro. Circular fibroblast colonies were formed using a drop containing 7.5 x 10(5) murine dermal fibroblasts and allowed to grow for 7 days. When peritoneal exudate macrophages were added (0.5-3.0 x 10(6) cells/dish) and activated in vitro by LPS (1 microgram/ml), the fibroblast colony's growth was suppressed. LPS alone, at the concentration used, had no effect on the fibroblast growth. Hydrocortisone (> or = 10(-7) M) totally reversed the suppression, when added either simultaneously with or 6, 24, or 48 h after the LPS. The efficacy of late hydrocortisone treatment suggests that its effect was through prevention of the expression of the LPS activation of the macrophages. These findings may provide a possible clue to a pharmacological modulation of the healing processes that occur in the periapical lesion once its infective source had been eliminated.  相似文献   

7.
8.
9.
10.
In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway.  相似文献   

11.
Bacterial chemotaxis results from the ability of flagellated bacteria to control the frequency of switching between smooth-swimming and tumbling episodes in response to changes in concentration of extracellular substances. High levels of phosphorylated CheY protein are the intracellular signal for inducing the tumbling mode of swimming. The CheZ protein has been shown to control the level of phosphorylated CheY by regulating its rate of dephosphorylation. To identify functional domains in the CheZ protein, we made mutants by random mutagenesis of the cheZ gene and constructed a series of deletions. The map position and the in vivo and in vitro activity of the resulting gain- or loss-of-function mutant proteins define separate functional domains of the CheZ protein.  相似文献   

12.
Site-directed mutations involving selected amino acids of Escherichia coli single-stranded DNA-binding protein (SSB) were tested for their in vivo functionality when introduced into a chromosomal ssb deletion strain on a plasmid. All mutants complemented the ssb deletion for viability when present on a pSC101 derivative. The generation time with ssbW54S doubled in comparison to the ssb+ control, and both the ssbW54S- and ssbH55K-containing strains exhibited temperature sensitivity. ssbH55K, ssbW54S, ssbW88T, and ssbH55Y (ssb-1) strains displayed reduced survival to ultraviolet irradiation, while ssbW40T and ssbF60L strains were comparable to the ssb+ control strain. This study represents the first investigation of the in vivo properties of ssb mutations constructed for in vitro analysis of DNA binding by SSB.  相似文献   

13.
Several putative Escherichia coli pseudouridine (Psi) synthases have been identified by iterative searching of genomic databases for ORFs homologous to known Psi synthases [Gustafsson et al. (1996) Nucleic Acids Res. 24, 3756-3762]. Of these, yceC and yfiI were proposed to encode Psi synthases which modify 23S rRNA. In the present work, yceC and yfiI were cloned and overexpressed in E. coli, and the encoded enzymes, YceC and YfiI, were purified to homogeneity. Both proteins converted Urd residues of rRNA to Psi, thus confirming their identities as Psi synthases. However, in in vitro experiments both enzymes extensively modified Urd residues of both 23S rRNA and 16S rRNA. Gene-disruption of yceCresulted in the absence of Psi modification at positions U955, 2504, and 2580 of 23S RNA, thus identifying these sites as in vivo targets for YceC. Likewise, yfiI disruption resulted in the absence of Psi modification at positions U1911, 1917, and possibly 1915 of 23S RNA. Disruption of yceC did not affect the growth under the conditions tested, whereas yfiI-disrupted cells showed a dramatic decrease in growth rate. Since YceC and YfiI hypermodify RNA in vitro, factors in addition to ribonucleotide sequence must contribute to the in vivo specificity of these enzymes.  相似文献   

14.
15.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

16.
Antimutators are mutant strains that have reduced mutation rates compared to the corresponding wild-type strain. Their existence, along with mutator mutants that have higher mutation rates compared to the wild-type strain, are powerful evidence that mutation rates are genetically controlled. Compared to mutator mutants, antimutators have a very distinguishing property. Because they prevent normally occurring mutations, they, uniquely, are capable of providing insight into the mechanisms of spontaneous mutations. In this review, antimutator mutants are discussed in bacteriophage T4 and the bacterium Escherichia coli, with regard to their properties, possible mechanisms, and implications for the sources of spontaneous mutations in these two organisms.  相似文献   

17.
Enteropathogenic Escherichia coli uses a type III secretion apparatus to deliver proteins essential for pathogenesis to the host epithelium. Several proteins have been detected in culture supernatants of the prototype EPEC strain E2348/69 and three of these, EspA, EspB, and EspD, use type III machinery for export. Here, we report the identification and characterization of CesD, a protein required for proper EspB and EspD secretion. CesD shows sequence homology to chaperone proteins from other type III secretion pathways. Based on this, we hypothesize that CesD may function as a secretion chaperone in EPEC. A mutation in cesD abolished EspD secretion into culture supernatants and reduced the amount of secreted EspB, but had little effect on the amount of secreted EspA. The mutant strain was negative for both FAS and Tir phosphorylation, consistent with the previously described roles for EspB and EspD in EPEC pathogenesis. CesD was shown to interact with EspD but not EspB or EspA. CesD was detected in the bacterial cytosol, and, surprisingly, a substantial amount of the protein was also found to be associated with the inner membrane. Thus, although CesD has some attributes that are similar to other type III secretion chaperones, its membrane localization separates it from previously described members of this family.  相似文献   

18.
Complete genes IE12, IE63, IE68, IE175, UL19, UL29 of herpes simplex virus type I or their fragments have been cloned in Escherichia coli cells. The peptides expressed were shown to be fused with cro-beta-galactosidase proteins. The recombinant proteins containing amino acid sequences of ICP4, ICP27 and ICP47, major capsid protein, and major DNA-binding protein react in immunoblotting with the anti-HSVI serum from hyperimmune rabbit. The recombinant proteins can be used for creation of diagnosticums and other scientific and practical purposes. The immunological properties of the recombinant proteins are being investigated.  相似文献   

19.
SecA is a dynamic protein that undergoes ATP-dependent membrane cycling to drive protein translocation across the Escherichia coli inner membrane. To understand more about this process, azide-resistant (azi) and signal sequence suppressor (prlD) alleles of secA were studied. We found that azide resistance is cold sensitive because of a direct effect on protein export, suggesting that SecA-membrane interaction is regulated by an endothermic step that is azide inhibitable. secG function is required for expression of azide-resistant and signal sequence suppressor activities of azi and prlD alleles, and in turn, these alleles suppress cold-sensitive and export-defective phenotypes of a secG null mutant. These remarkable genetic observations support biochemical data indicating that SecG promotes SecA membrane cycling and that this process is dependent on an endothermic change in SecA conformation.  相似文献   

20.
Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD', the function of UmuD' has yet to be determined. In an attempt to elucidate the role of UmuD' in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD' plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD' mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD', three were nonsense mutations that resulted in a truncated UmuD' protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD'. All 17 umuD' mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号