共查询到18条相似文献,搜索用时 56 毫秒
1.
镀铜竹纤维的制备与8 mm波衰减性能研究 总被引:3,自引:0,他引:3
为研制一种新型轻质毫米波干扰材料,试验选用竹纤维为基体,以化学镀铜的方式对其进行表面金属化改性,检测了镀铜竹纤维的8mm波衰减性能。结果表明:30mg镀铜竹纤维样品在面密度为0.96g·m-2的条件下的衰减分贝值可达27.3dB;不同工艺参数下制备的镀铜竹纤维的8mm波衰减性能有一定差异。金属化竹纤维可望成为一种新型轻质毫米波干扰材料。 相似文献
2.
3.
以鳞片状晶体石墨为基本原料,通过湿法球磨,研制出一种新型3 mm波衰减材料——超薄导电片。研究了其基本物理性能,测试了超薄导电片对3毫米波的动态衰减性能。基于毫米波干扰材料的雷达散射截面理论,通过对超薄导电片的趋肤深度、表面电阻率、热损耗电阻的分析、估算,说明了超薄导电片对3 mm波的吸收衰减优于毫米波箔条,约占总衰减的35.6%.应用米氏理论,计算了超薄导电片在3 mm波段的消光参数,认为在粒径参数尼较小时,以吸收衰减为主;当是较大时以散射衰减为主,在半波长(超薄导电片的粒径为1.5 mm)时,吸收衰减约占总衰减的42%. 相似文献
4.
采用静态测试方法,研究不同直径、不同长度、不同平面密度的气相生长纳米碳纤维在12 ̄18GHz波段内的微波衰减性能,并对其衰减机理进行分析。纳米碳纤维结构特异,对电磁波除散射衰减外,还存在着吸收衰减。测试结果表明,纳米碳纤维在该波段内,对微波衰减显著,有望作为一种宽频带电磁波干扰材料。衰减性能主要与直径有关,直径较小的纳米碳纤维微波衰减效果最好。 相似文献
5.
短切碳纤维云团对毫米波/红外复合干扰性能影响 总被引:1,自引:2,他引:1
为了研究短切碳纤维云团对毫米波/红外的复合干扰性能,构建了实验测试平台。在静风条件下进行了1.5 mm/4 mm碳纤维爆炸分散实验。研究了爆炸分散云团形成过程。测试并分析了云团对3 mm波、8 mm波和8~14μm红外的干扰性能。结果表明,爆炸方式能够有效分散短切碳纤维。在实验的弹体结构和装填参数条件下能够形成稳定的烟幕云团,呈现优良的毫米波/红外复合干扰性能。对毫米波和红外的最大衰减大于95%。对3 mm波的有效作用时间(单程衰减分贝数≥5.2 d B)不小于1 min,对8 mm波能达到30 s以上,对红外靶标的有效遮蔽时间(衰减率≥85%)大于20 s,碳纤维长度的变化对毫米波干扰性能影响较大。 相似文献
6.
针对短切碳纤维爆炸分散过程设计了实验平台,根据爆炸分散不同时期的特点及要求,利用两台高速摄像机同时拍摄,分别以5万帧/s和2000帧/s的帧率记录了壳体破裂过程和云团宏观膨胀过程。通过对爆炸分散全过程序列图像的测量分析,获得了壳体破裂、云团分散成形特征,建立了爆炸分散云团直径、高度和膨胀速度随时间变化曲线。四种相似结构弹体在相同装填参数条件下爆炸分散的高速摄像记录与分析表明,短切碳纤维爆炸分散过程主要经历了壳体破裂、射流喷出、云团膨胀和湍流混合四个阶段,且分散过程遵循相似的规律,初始云团直径分别与弹体直径、碳纤维装填量的3次方根呈线性关系,初始云团高度与弹体高度呈二次多项式关系。 相似文献
7.
8.
研究了短切碳纤维增强Li2O-Al2O3-SiO2玻璃-陶瓷基(以下简称Csf/LAS)复合材料的制备工艺及其力学性能。 相似文献
9.
10.
对采用SHS/PHIP技术制备的Cf/TiC-TiB2陶瓷基复合材料中存在短切碳纤维损伤严重,补强增韧效果不明显的原因进行分析研究。研究发现:在B4C+3Ti+Cf体系的SHS反应过程中,由于反应温度太高,使短切碳纤维表面的碳原子与钛粉之间发生化学反应,造成短切碳纤维表面的化学损伤,影响短切碳纤维的性能,进而影响其补强增韧的效果。在SHS反应过程中,防止或减少短切碳纤维化学损伤的主要途径就是添加稀释剂来降低反应温度。在B4C+3Ti+xCf TiC+2TiB2+xCf体系中,通过向反应物中添加稀释剂镍可以有效地防止或减少短切碳纤维的化学损伤,改善各相之间的接触状况,提高各相之间的界面强度,提高短切碳纤维补强增韧的效果。 相似文献
11.
12.
13.
14.
15.
16.
为了提高高氯酸铵(AP)/端羟基聚丁二烯(HTPB)底排推进剂的力学性能,在原始AP/HTPB底排推进剂配方中添加质量分数分别为0.3%和0.5%的2 mm短切碳纤维。对含短切碳纤维的AP/HTPB底排推进剂进行静态单轴拉伸、压缩性能实验。用扫描电镜(SEM)进行试件断裂面微观分析。实验结果表明:添加质量分数为0.3%和0.5%的2 mm碳纤维的AP/HTPB底排推进剂的拉伸强度分别提高了11.7%和33.0%,压缩强度分别提高2.1%和7.8%。短切碳纤维分布在HTPB基体中。短切碳纤维与HTPB基体的黏结性能良好。新型含短切碳纤维的AP/HTPB底排推进剂的破坏主要由AP颗粒脱粘引发。短切碳纤维对HTPB基体中微裂纹的发展有抑制作用。显示短切碳纤维是良好的AP/HTPB底排推进剂的增强体。 相似文献
17.