首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotriene biosynthesis inhibitors have potential as new therapies for asthma and inflammatory diseases. The recently disclosed thiopyrano[2,3,4-cd]indole class of 5-lipoxygenase (5-LO) inhibitors has been investigated with particular emphasis on the side chain bearing the acidic functionality. The SAR studies have shown that the inclusion of a heteroatom (O or S) in conjunction with an alpha-ethyl substituted acid leads to inhibitors of improved potency. The most potent inhibitor prepared contains a 2-ethoxybutanoic acid side chain. This compound, 14d (2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methox y]- 4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]-butanoic acid, L-699,333), inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50s of 22 nM, 7 nM and 3.8 microM, respectively). The racemic acid 14d has been shown to be functionally active in a rat pleurisy model (inhibition of LTB4, ED50 = 0.65 mg/kg, 6 h pretreatment) and in the hyperreactive rat model of antigen-induced dyspnea (50% inhibition at 2 and 4 h pretreatment; 0.5 mg/kg po). In addition, 14d shows excellent functional activity against antigen-induced bronchoconstriction in the conscious squirrel monkey [89% inhibition of the increase in RL and 68% inhibition in the decrease in Cdyn (0.1 mg/kg, n = 3)] and in the conscious sheep models of asthma (iv infusion at 2.5 micrograms/kg/min). Acid 14d is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of human 15-LO, porcine 12-LO and ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or competition in a FLAP binding assay (IC50 > 10 microM). Resolution of 14d affords 14g, the most potent diastereomer, which inhibits the 5-HPETE production of human 5-LO and LTB4 biosynthesis of human PMN leukocytes and human whole blood with IC50s of 8 nM, 4 nM, and 1 microM respectively. The in vitro and in vivo profile of 14d is comparable to that of MK-0591, which has showed biochemical efficacy in inhibiting ex vivo LTB4 biosynthesis and urinary LTE4 excretion in clinical trials.  相似文献   

2.
Nonredox type 5-lipoxygenase (5-LO) inhibitors, such as ZM 230487, its methyl analogue ZD 2138, or the Merck compound L-739,010, suppress cellular leukotriene synthesis of ionophore stimulated granulocytes with IC50 values of about 50 nM. However, in cell homogenates or in preparations of purified enzyme, up to 150-fold higher concentrations are required for similar inhibition of 5-LO activity. This loss of 5-LO inhibition in cell homogenates was reversed by addition of glutathione or dithiothreitol, which increased the inhibitory potency of ZM 230487 or L-739,010 by about 100 to 150-fold so that 5-LO inhibition was comparable with that of intact cells. In the presence of thiols, addition of hydroperoxide [13(S)-HpODE], glutathione-peroxidase inhibition by iodacetate or selenium-deficiency lead to impaired 5-LO inhibition by ZM 230487 in cell homogenates. Moreover, addition of glutathione peroxidase was required for efficient inhibition of purified human 5-LO by ZM 230487. The data suggest that low hydroperoxide concentrations are important for efficient 5-LO inhibition by ZM 230487. The kinetic analysis revealed a noncompetitive inhibition of 5-LO by ZM 230487 at low hydroperoxide levels, whereas it acted as a competitive inhibitor with low affinity under nonreducing conditions in granulocyte homogenates. No such redox-dependent effects were observed with the 5-LO inhibitor BWA4C, the 5-LO activating protein-inhibitor MK-886 or the pentacyclic triterpene acetyl-11-keto-beta-boswellic acid. These data suggest that physiological conditions associated with oxidative stress and increased peroxide levels lead to impaired efficacy of nonredox type 5-LO inhibitors like ZM 230487 or L-739,010. This could explain the reported lack of activity of this class of 5-LO inhibitors in chronic inflammatory processes.  相似文献   

3.
OBJECTIVE AND DESIGN: The effect of tenidap on the metabolism of arachidonic acid via the 5-lipoxygenase (5-LO) pathway was investigated in vitro and in vivo. MATERIALS AND TREATMENT: In vitro (cells). Arachidonic acid (AA) stimulated rat basophilic leukemia, (RBL) cells; A23817 activated neutrophils (human rat, and rabbit), macrophages (rat), and blood (human). In vitro (enzyme activity). RBL-cell homogenate; purified human recombinant 5-LO. In vivo: Rat (Sprague-Dawley) models in which peritoneal leukotriene products were measured after challenge with zymosan (3 animals per group), A23187 (11 animals per group), and immune complexes (3-5 animals per group), respectively. METHODS: 5-Hydroxyeicosatetraenoic acid (5-HETE) and dihydroxyeicosatetraenoic acids (diHETEs, including LTB4) were measured as radiolabeled products (derived from [14C]-AA) or by absorbance at 235 or 280 nm, respectively, after separation by HPLC. Radiolabeled 5-HPETE was measured by a radio-TLC analyser after separation by thin layer chromatography (TLC). Deacylation of membrane bound [14C]-AA was determined by measuring radiolabel released into the extracellular medium. 5-LO translocation from cytosol to membrane was assessed by western analysis. Rat peritoneal fluid was assayed for PGE, 6-keto-PGF1 alpha, LTE4 or LTB4 content by EIA and for TXB2 by RIA. RESULTS: Tenidap suppressed 5-LO mediated product production in cultured rat basophilic leukemia (RBL-1) cells from exogenously supplied AA, and in human and rat neutrophils, and rat peritoneal macrophages stimulated with A23187 (IC50, 5-15 microM). In addition, tenidap was less potent in inhibiting the release of radiolabeled AA from RBL-1 cells (IC50, 180 microM), suggesting that the decrease in 5-LO derived products could not be explained by an effect on cellular mobilization of AA (i.e., phospholipase). Tenidap blocked 5-hydroxyeicosatetraenoic acid (5-HETE) production by dissociated RBL-1 cell preparations (IC50, 7 microM), as well as by a 100000 x g supernatant of 5-LO/hydroperoxidase activity, suggesting a direct effect on the 5-LO enzyme itself. In addition, tenidap impaired 5-LO translocation from cytosol to its membrane-bound docking protein (FLAP) which occurs when human neutrophils are stimulated with calcium ionophore, indicating a second mechanism for inhibiting the 5-LO pathway. Surprisingly, tenidap did not block the binding of radiolabeled MK-0591, an indole ligand of FLAP, to neutrophil membranes. Although its ability to inhibit the cyclooxygenase pathway was readily observed in whole blood and in vivo, tenidap's 5-LO blockade could not be demonstrated by ionophore stimulated human blood, nor after oral dosing in rat models in which peritoneal leukotriene products were measured after challenge with three different stimuli. The presence of extracellular proteins greatly reduced the potency of tenidap as a 5-LO inhibitor in vitro, suggesting that protein binding is responsible for loss of activity in animal models. CONCLUSIONS: Tenidap inhibits 5-lipoxygenase activity in vitro both directly and indirectly by interfering with its translocation from cytosol to the membrane compartment in neutrophils. A potential mechanism for the latter effect is discussed with reference to tenidap's ability to lower intracellular pH. Tenidap did not inhibit 5-LO pathway activity in three animal models.  相似文献   

4.
A novel series of indole and benzimidazole derivatives were synthesized and evaluated for their inhibitory activity of rat prostatic 5alpha-reductase. Among these compounds, 4-?2-[1-(4,4'-dipropylbenzhydryl)indole-5-carboxamido]phenoxy?buty ric acid (15) and its benzimidazole analogue 25 showed potent inhibitory activities for rat prostatic 5alpha-reductase (IC50 values of 9.6+/-1.0 and 13+/-1.5 nM, respectively), with the potency very close to that of finasteride. Compound 30, in which the moiety between the benzene ring and amide bond was replaced by quinolin-4-one ring, showed almost equipotent activity (IC50= 19+/-6.2nM) with the correspondent amide derivative 13. This result was consistent with the previous observation that the coplanarity of this moiety might contribute to the potent inhibitory activity.  相似文献   

5.
Novel N-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)amide derivatives 1 were synthesized and tested for their ability to inhibit rabbit small intestinal ACAT (acyl-CoA:cholesterol acyltransferase) and lower serum total cholesterol in cholesterol-fed rats. Among the synthesized compounds, N-(2,2,4,6-tetramethyl-2,3-dihydrobenzofuran-7-yl)amide derivatives showed potent ACAT inhibitory activity. The synthesis and structure-activity relationships of these compounds are described. A methyl group at position 6 of the 2,3-dihydrobenzofuran moiety was important for potent ACAT inhibitory activity. In the series of N-(2,2,4,6-tetramethyl-2,3-dihydrobenzofuran-7-yl) amides, lipophilicity of the acyl moiety was necessary for the potent ACAT inhibitory activity. The highly lipophilic acid amides N-(2,2,4,6-tetramethyl-2,3-dihydrobenzofuran-7-yl)-2,2- dimethyldodecanamide (10) and 6-(4-chlorophenoxy)-N-(2,2,4,6-tetramethyl-2,3-dihydrobenzofuran-7-y l)-2,2-dimethyloctanamide (50) showed potent activity. Introduction of a dimethylamino group at position 5 of the 2,3-dihydrobenzofuran moiety resulted in highly potent activity. The most potent compound, N-[5-(dimethylamino)-2,2,4,6-tetramethyl-2,3-dihydrobenzofuran-7-yl ]-2,2-dimethyldodecanamide (13, TEI-6620), showed highly potent ACAT inhibitory activity (rabbit small intestine IC50 = 0.020 microM, rabbit liver IC50 = 0.009 microM), foam cell formation inhibitory activity (rat peritoneal macrophage IC50 = 0.030 microM), extremely potent serum cholesterol-lowering activity in cholesterol-fed rats (71% at a dose of 0.3 mg/kg/day po), and good bioavailability in fed dogs (Cmax = 2.68 microg/mL at 1 h, 10 mg/kg po).  相似文献   

6.
A novel series of indole-3-alkanoic acids with varied N-benzyl substituents were synthesized as nonsteroidal inhibitors of steroid 5 alpha-reductase. The structure-activity relationships in this series were studied and the optimum carboxylic acid side chain was butyric acid. Furthermore, compounds with a diaryl substituent at the 1-position of the indole ring displayed strong inhibitory activities in vitro. Amongst these derivatives, 4-[1-(6,6-dimethyl-6H-dibenzo[b,d]pyran-3-yl)methylindol-3-yl]b uty ric acid (FR119680) displayed very high inhibitory activity in vitro against rat prostatic 5 alpha-reductase (IC50 = 5.0 nM) and good in vivo activity in the castrated young rat model.  相似文献   

7.
Steroid 5alpha-reductase is a system of two isozymes (5alphaR-1 and 5alphaR-2) which catalyzes the NADPH-dependent reduction of testosterone to dihydrotestosterone in many androgen sensitive tissues and which is related to several human endocrine diseases such as benign prostatic hyperplasia (BPH), prostatic cancer, acne, alopecia, pattern baldness in men and hirsutism in women. The discovery of new potent and selective 5alphaR inhibitors is thus of great interest for pharmaceutical treatment of these diseases. The synthesis of a novel class of inhibitors for human 5alphaR-1 and 5alphaR-2, having the 19-nor-10-azasteroid skeleton, is described. The inhibitory potency of the 19-nor-10-azasteroids was determined in homogenates of human hypertrophic prostates toward 5alphaR-2 and in DU-145 human prostatic adenocarcinoma cells toward 5alphaR-1, in comparison with finasteride (IC50 = 3 nM for 5alphaR-2 and approximately 42 nM for 5alphaR-1), a drug which is currently used for BPH treatment. The inhibition potency was dependent on the type of substituent at position 17 and on the presence and position of the unsaturation in the A and C rings. delta9(11)-19-Nor-10-azaandrost-4-ene-3,17-dione (or 10-azaestra-4,9(11)-diene-3,17-dione) (4a) and 19-nor-10-azaandrost-4-ene-3,17-dione (5) were weak inhibitors of 5alphaR-2 (IC50 = 4.6 and 4.4 microM, respectively) but more potent inhibitors of 5alphaR-1 (IC50 = 263 and 299 nM, respectively), whereas 19-nor-10-aza-5alpha-androstane-3,17-dione (7) was inactive for both the isoenzymes. The best result was achieved with the 9:1 mixture of delta9(11)- and delta8(9)-17beta-(N-tert-butylcarbamoyl)-19-nor-10-aza-4- androsten-3-one (10a,b) which was a good inhibitor of 5alphaR-1 and 5alphaR-2 (IC50 = 127 and 122 nM, respectively), with a potency very close to that of finasteride. The results of ab initio calculations suggest that the inhibition potency of 19-nor-10-azasteroids could be directly related to the nucleophilicity of the carbonyl group in the 3-position.  相似文献   

8.
In a previous paper we reported that 2-(p-hydroxyarylbutadienyl)benzoxazoles are highly potent 5-lipoxygenase inhibitors. We synthesized their ethenyl homologues and benzothiazole derivatives, and evaluated their 5-lipoxygenase inhibitory activity in vitro with cell-free rat basophilic leukemia (RBL-1). In most cases the replacement of benzoxazolyl with benzothiazolyl resulted in an enhancement of the activity. All compounds with butadienyl spacers tested herein exhibited strong inhibitory activities. While most of the ethenyl homologues showed weaker activities than their corresponding butadienyl homologues, some ethenyl compounds in the benzothiazole derivatives were found to be as potent as their corresponding butadienyl homologues. The inhibitory activity was also affected by the variation in the p-hydroxyaryl functionality.  相似文献   

9.
Several 3, 3-dimethyl-N-[omega-(tetrahydronaphthalen-1-yl)alkyl]piperidine derivatives and some related compounds were prepared. Their affinities and sigma-subtype selectivities were investigated by radioligand binding assays, labeling sigma1 receptors with [3H]-SKF 10047 and sigma2 receptors with [3H]-DTG. Many tested compounds bound sigma1 and/or sigma2 receptors with nanomolar or subnanomolar IC50 values. Compound (+)-22, (+)-3,3-dimethyl-1-[3-(5-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-propyl]piperidine, was the most potent (IC50 = 0.089 nM) and selective sigma1 ligand (1340-fold), showing a 10-fold enantioselectivity. Compounds 29 (3, 3-dimethyl-1-[4-(6-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-butyl]piperidine) and 31 (3, 3-dimethyl-1-[5-(1,2,3, 4-tetrahydronaphthalen-1-yl)-n-pentyl]piperidine) were highly potent (IC50 = 0.016 nM and IC50 = 0.008 nM, respectively) and highly selective sigma2 ligands (more than 100000-fold).  相似文献   

10.
N,N-Bis(7-chloroquinolin-4-yl)heteroalkanediamines 1-11 were synthesized and screened against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. These bisquinolines had IC50 values from 1 to 100 nM against P. falciparum in vitro. Six of the 11 bisquinolines were significantly more potent against the chloroquine-resistant W2 clone compared to the chloroquine-sensitive D6 clone. For bisquinolines 1-11 there was no relationship between the length of the bisquinoline heteroalkane bridge and antimalarial activity and no correlation between in vitro and in vivo antimalarial activities. Bisquinolines with alkyl ether and piperazine bridges were substantially more effective than bisquinolines with alkylamine bridges against P. berghei in vivo. Bisquinolines 1-10 were potent inhibitors of hematin polymerization with IC50 values falling in the narrow range of 5-20 microM, and there was a correlation between potency of inhibition of hematin polymerization and inhibition of parasite growth. Compared to alkane-bridged bisquinolines (Vennerstrom et al., 1992), none of these heteroalkane-bridged bisquinolines had sufficient antimalarial activity to warrant further investigation of the series.  相似文献   

11.
SC-45662 and SC-41661A, selective arachidonate 5-lipoxygenase (5-LO) inhibitors, had markedly different effects on formyl-methionyl-leucyl-phenylalanine (fMLP) and complement fragment 5a (C5a) induced superoxide release from human neutrophils (PMNs). SC-45662 inhibited superoxide generation induced by fMLP and C5a with IC50 values of 12 and 5 microM, respectively. Furthermore, SC-45662 was capable of inhibiting fMLP and C5a induced superoxide release in PMNs primed with bacterial lipopolysaccharide, tumor necrosis factor-alpha and other priming agents. SC-41661A, a compound from the same chemical series as SC-45662, did not inhibit or induce superoxide generation, but instead primed PMNs for fMLP and C5a induced superoxide generation. The induced superoxide release was concentration dependently enhanced 2 to 4-fold at 5-50 microM. Superoxide release induced by phorbol myristate acetate or serum-activated zymosan was unaffected by either SC-45662 or SC-41661A. The regulation of superoxide generation by these compounds, both of which have the identical oxidation-reduction pharmacophore, was clearly independent of their effects on 5-LO activity. Furthermore, the mechanism by which SC-45662 and SC-41661A alter superoxide generation did not appear to depend on inhibition of xanthine oxidase, catalase or superoxide dismutase. These new compounds provide effective tools for further investigation of the relationship of these two biochemical oxidative systems.  相似文献   

12.
Some epimeric 20-hydroxy, 20-oxime, 16 alpha, 17 alpha-, 17,20- and 20,21-aziridine derivatives of progesterone were synthesized and evaluated as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase (P450(17) alpha) and 5 alpha-reductase (5 alpha-R). The reduction of 16-dehydropregenolone acetate (3a) was reinvestigated. NaBH4 in the presence of CeCl3 gave better stereo-selectivity for 20 beta-ol [20 alpha/20 beta-OH (4 alpha/4 beta) = 1/2.7] than LTBAH or the Meerwein-Pondroff method reported; reduction with Zn in HOAc formed exclusively 20 alpha-ol (4 alpha b). The 20 alpha- and 20 beta-hydroxy-4,16-pregnadien-3-one (9 alpha) and (9 beta) were synthesized from the alcohols 4 alpha b and 4 beta b. Several 20-oxime pregnadienes and 16 alpha, 17 alpha-, 17,20- and 20,21-aziridinyl-5-pregnene derivatives were also synthesized. LiAlH4 reduction of the 16-en-20-oxime (12b) yielded 20 (R)-(13a) and 20(S)-17 alpha,20-aziridine (13b) and 20(R)-17 beta,20-aziridine (14a). Several compounds inhibited the human P450(17) alpha with greater potency than ketoconzole. The 5 alpha-R enzyme assay showed that while (9 alpha) did not have any activity, (9 beta) and (3b) were potent 5 alpha-reductase (IC50 = 21 and 31 nM) inhibitors with activities similar to finasteride. The 20-oximes (17a) and (17b) were potent dual inhibitors for both 5 alpha-R (IC50 = 63 and 115 nM, compared to 33 nM for finasteride) and P450(17) alpha (IC50 = 43 and 25 nM, compared to 78 nM for ketoconazole).  相似文献   

13.
We examined the inhibitory potency of F-1394 ((1S,2S)-2-[3-(2,2-dimethylpropyl)-3-nonylureido]cyclohexane -1-yl 3-[(4R)-N-(2,2,5,5-tetramethyl-1,3-dioxane-4-carbonyl)amino]propionate), an acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, on ACAT activity and its hypolipidemic effect. F-1394 inhibited whole-cell ACAT activity in HepG2 cells with an IC50 value of 42 nM. The potency of F-1394 was greater than that of the five other ACAT inhibitors tested (YM-17E, CI-976, 57-118, CL-277,082 and DL-melinamide). In rats made hyperlipidemic by Triton WR-1339, F-1394 caused a reduction in the hepatic secretion rate of cholesterol. These data suggest that inhibition of hepatic ACAT activity helps to reduce very low density lipoprotein secretion from the liver into the circulation.  相似文献   

14.
Recently we reported on overcoming the species difference of our first orally active non-peptide bradykinin (BK) B2 receptor antagonists, incorporating an 8-[[3-(N-acylglycyl-N-methylamino)-2, 6-dichlorobenzyl]oxy]-3-halo-2-methylimidazo[1,2-a]pyridine skeleton, leading to identification of the first clinical candidate 4a (FR167344). With this potent new lead compound in hand, we then investigated further refinement of the basic framework by replacement of the imidazo[1,2-a]pyridine moiety and discovered several bioisosteric heterocycles. Extensive optimization of these new heteroaromatic derivatives revealed the detailed structure-activity relationships (SAR) around the imidazo[1, 2-a]pyridine ring and the 2,6-dichlorobenzyl moiety, leading to the discovery of our second clinical candidate 87b (FR173657) which inhibited the specific binding of [3H]BK to recombinant human B2 receptors expressed in Chinese hamster ovary (CHO) cells and guinea pig ileum membrane preparations expressing B2 receptors with IC50's of 1.4 and 0.46 nM, respectively. This compound also displayed excellent in vivo functional antagonistic activity against BK-induced bronchoconstriction in guinea pigs with an ED50 value of 0.075 mg/kg by oral administration. Further modifications of the terminal substituents on the pyridine moiety led to a novel pharmacophore and resulted in the identification of 99 (FR184280), whose IC50 value for human B2 receptors (0.51 nM) was comparable to that of the second-generation peptide B2 antagonist Icatibant.  相似文献   

15.
A series of substituted 2-iminopyrrolidines has been prepared and shown to be potent and selective inhibitors of the human inducible nitric oxide synthase (hiNOS) isoform versus the human endothelial nitric oxide synthase (heNOS) and the human neuronal nitric oxide synthase (hnNOS). Simple substitutions at the 3-, 4-, or 5-position afforded more potent analogues than the parent 2-iminopyrrolidine 1. The effect of ring substitutions on both potency and selectivity for the different NOS isoforms is described. Substitution at the 4- and 5-positions of the 2-iminopyrrolidine yielded both potent and selective inhibitors of hiNOS. In particular, (+)-cis-4-methyl-5-pentylpyrrolidin-2-imine, monohydrochloride (20), displayed potent inhibition of hiNOS (IC50 = 0.25 microM) and selectivities of 897 (heNOS IC50/hiNOS IC50) and 13 (hnNOS IC50/hiNOS IC50). Example 20 was shown to be an efficacious inhibitor of NO production in the mouse endotoxin assay. Furthermore, 20 displayed in vivo selectivity, versus heNOS isoform, by not elevating blood pressure at multiples of the effective dose in the mouse.  相似文献   

16.
A series of novel tetrahydropyrrolo[1,2-a]pyrazine derivatives were synthesized and evaluated as aldose reductase inhibitors (ARIs) on the basis of their abilities to inhibit porcine lens aldose reductase (AR) in vitro and to inhibit sorbitol accumulation in the sciatic nerve of streptozotocin-induced diabetic rats in vivo. Of these compounds, spirosuccinimide-fused tetrahydropyrrolo[1, 2-a]pyrazine-1,3-dione derivatives showed significantly potent AR inhibitory activity. In the in vivo activity of these derivatives, 2-(4-bromo-2-fluorobenzyl)-1,2,3,4-tetrahydropyrrolo[1, 2-a]pyrazine-4-spiro-3'-pyrrolidine-1,2',3,5'-tetrone (23t) (SX-3030) showed the best oral activity. The enantiomers of 23t were synthesized, and the biological activities were evaluated. It was found that AR inhibitory activity resides in the (-)-enantiomer 43 (AS-3201), which was 10 times more potent in inhibition of the AR (IC50 = 1.5 x 10(-8) M) and 500 times more potent in the in vivo activity (ED50 = 0.18 mg/kg/day for 5 days) than the corresponding (+)-enantiomer 44 (SX-3202). From these results, AS-3201 was selected as the candidate for clinical development. The absolute configuration of AS-3201 was also established to be (R)-form by single-crystal X-ray analysis. In this article we report the preparation and structure-activity relationship (SAR) of tetrahydropyrrolopyrazine derivatives including a novel ARI, AS-3201.  相似文献   

17.
From the methylene chloride extract of the leaves of Guiera senegalensis a novel naphthopyran, 5-methylflavasperone (5,8,10-trimethoxy-2-methyl-4 H-naphtho[1,2-b]pyran-4-one), as well as rhamnetin were isolated. Rhamnetin showed a strong inhibitory activity on 5-lipoxygenase from porcine leucocytes with an IC50 value of 0.7 microM whereas 5-methylflavasperone revealed only a weak inhibitory activity (IC50 > 200 microM). In the deoxyribose assay both compounds exerted similar antiradicalar effects (IC50 15.8 and 16.7 microM, respectively). In another assay only rhamnetin inhibited peroxidation of phospholipid liposomes (IC50 = 2.4 microM). For 5-methylflavasperone no dose dependent inhibition could be observed.  相似文献   

18.
A series of highly potent and specific fibrinogen receptor antagonists have been discovered and optimized through structural modification of the novel amidinoindole and benzofuran compounds, I and II. Systematic linker optimization afforded the amidinobenzofuran-containing inhibitor 29, which displayed an IC50 value of 250 nM in platelet aggregation assays. Attempts to enhance activity by modification of the beta-position of the beta-alanyl carboxylate group of 29 had only a modest effect on inhibitory activity in aggregation assays. Analogues prepared to enhance the activity by conformational restriction were also found to be equally or less potent. In contrast, modification at the alpha-position of the beta-alanyl carboxylate group resulted in the identification of extremely potent and novel amidinobenzofuran-containing derivatives 46-49. Reexamination of 5,6-bicyclic aromatic nucleus led to the further identification of amidinoindole- and amidinoindazole-containing derivatives 53-55. These analogues, 46-49 and 53-55, exhibited potent in vitro activity with IC50 values of 25-65 nM in platelet aggregation assays and an IC50 value of 2 nM in fibrinogen binding assays and demonstrated a selectivity of > 50,000-fold for GPIIb-IIIa versus the most closely related integrin, the vitronectin receptor, alpha v beta 3.  相似文献   

19.
Abiraterone (17-(3-pyridyl)androsta-5,16-dien-3beta-ol, 1) is a potent inhibitor (IC50 4 nM for hydroxylase) of human cytochrome P45017alpha. To assist in studies of the role of the 16,17-double bond in its mechanism of action, the novel 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) and 17beta-(3-pyridyl)-16,17alpha-epoxy-5alpha-androst-3beta-ol (6) were synthesized. 3beta-Acetoxyetienic acid was converted in three steps into 5 via photolysis of the thiohydroxamic ester 8. Oxidation of an appropriate 16,17-unsaturated precursor (21) with CrO3-pyridine afforded the acetate (23) of 6. Inhibition of the enzyme by 1, the similarly potent 5,6-reduced analogue 19 (IC50 5 nM), and the 4, 16-dien-3-one 26 (IC50 3 nM) and by the less potent (IC50 13 nM) 3,5, 16-triene 25 is slow to occur but is enhanced by preincubation of the inhibitor with the enzyme. Inhibition following preincubation with these compounds is not lessened by dialysis for 24 h, implying irreversible binding to the enzyme. In contrast under these conditions the still potent (IC50 27 nM) 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) showed partial reversal after 5 h of dialysis and complete reversal of inhibition after 24 h. This behavior was also shown by the less potent 16,17-reduced 3-pyridyl compounds 3 and 24. Further, in contrast to the compounds (1, 19, 25, 26) with the 16,17-double bond, the inhibition of the enzymic reaction was not enhanced by preincubation either with 5 or with the 17beta-pyridyl analogues 3, 4, and 24 which also lack this structural feature. The results show that the 16,17-double bond is necessary for irreversible binding of these pyridyl steroids to cytochrome P45017alpha. However oxidation to an epoxide is probably not involved since epoxide 6 was only a moderately potent inhibitor (IC50 260 nM).  相似文献   

20.
By incorporating an N-hydroxyurea functionality onto diaryltetrahydrofurans, a novel series of compounds was investigated as dual 5-lipoxygenese (5-LO) inhibitor and platelet-activating factor (PAF) receptor antagonist. These dual functional compounds were evaluated in vitro for 5-LO inhibition in RBL cell extracts and human whole blood, and PAF receptor antagonism in a receptor binding assay. PAF-induced hemoconcentration and arachidonic acid- and TPA-induced ear edema in mice were used to determine in vivo activities. The structure-activity relationship analysis to define a preclinical lead is presented. (+/-)-trans-2-[3-methoxy-4-(4-chlorophenylthioethoxy)-5-(N-methyl- N-h ydroxyureidyl)methylphenyl]-5-(3,4, 5-trimethoxyphenyl)tetrahydrofuran (40, CMI-392) was selected for further study. In the arachidonic acid-induced mouse ear edema model, 40 was more potent than either zileuton (a 5-LO inhibitor) or BN 50739 (a PAF receptor antagonist), and it demonstrated the same inhibitory effect as a physical combination of the latter two agents. These results suggest that a single compound which both inhibits leukotriene synthesis and blocks PAF receptor binding may provide therapeutic advantages over single-acting agents. The clinical development of compound 40 is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号