首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that a remarkable reduction in the wear of metal-on-metal hip joints can be achieved by simply increasing the diameter of the joint. A tribological evaluation of metal-on-metal joints of 16, 22.225, 28 and 36 mm diameter was conducted in 25 per cent bovine serum using a hip joint simulator. The joints were subject to dynamic motion and loading cycles simulating walking for both lubrication and wear studies. For each size of joint in the lubrication study, an electrical resistivity technique was used to detect the extent of surface separation through a complete walking cycle. Wear of each size of joint was measured gravimetrically in wear tests of at least 2 x 10(6) cycles duration. Joints of 16 and 22.225 mm diameter showed no surface separation in the lubrication study. This suggested that wear would be proportional to the sliding distance and hence joint size in this boundary lubrication regime. A 28 mm diameter joint showed only limited evidence of surface separation suggesting that these joints were operating in a mixed lubrication regime. A 36 mm diameter joint showed surface separation for considerable parts of each walking cycle and hence evidence of the formation of a protective lubricating film. Wear testing of 16 and 22.225 mm diameter metal-on-metal joints gave mean wear rates of 4.85 and 6.30 mm3/10(6) cycles respectively. The ratio of these wear rates, 0.77, is approximately the same as the joint diameters ratio, 16/22.225 or 0.72, as expected from simple wear theory for dry or boundary lubrication conditions. No bedding-in was observed with these smaller diameter joints. For the 28 mm diameter joint, from 0 to 2 x 10(6) cycles, the mean wear rate was 1.62 mm3/10(6) cycles as the joints bedded-in. Following bedding-in, from 2.0 x 10(6) to 4.7 x 10(6) cycles, the wear rate was 0.54 mm3/10(6) cycles. As reported previously by Goldsmith et al. in 2000 [1], the mean steady state wear rate of the 36 mm diameter joints was lower than those of all the other diameters at 0.07 mm3/10(6) cycles. For a range of joints of various diameters, subjected to identical test conditions, mean wear rates differed by almost two orders of magnitude. This study has demonstrated that the application of sound tribological principles to prosthetic design can reduce the wear of metal-on-metal joints, using currently available materials, to a negligible level.  相似文献   

2.
An in vitro wear study of alumina-alumina total hip prostheses.   总被引:1,自引:0,他引:1  
Four 28 mm diameter alumina-alumina hip prostheses were tested in the Mkll Durham hip simulator for 5 x 10(6) cycles using 25 per cent bovine serum as lubricant. Wear of the heads and cups was measured gravimetrically. The mean and standard deviation of the wear rate for the alumina cups was 0.097 +/- 0.039 mm3/10(6) cycles. The femoral heads produced such low wear that it could not be measured by weighing but could be detected byincreased surface roughness measurements. Such low wear rates represent about one-five-hundredthof the wear of ultra-high molecular weight polyethylene (UHMWPE) against ceramic in a similar test and supports work which indicates that fluid film lubrication exists in these joints.  相似文献   

3.
While total hip replacement represents the major success story in orthopaedic surgery in the twentieth century, there is much interest in extending even further, early in the twenty first century, the life of implants. Osteolysis has been identified as a major factor limiting the life of prostheses, with indications that fine polyethylene wear debris, generated primarily at the interface between the femoral head and the acetabular cup, promotes the process. There is therefore considerable interest in the introduction of alternative wear resistant systems to limit the deleterious effects of wear. These alternatives include ceramic-on-ceramic and metal-on-metal configurations and the present paper is primarily concerned with the latter. Some six pairs of new metal-on-metal implants of 36 mm diameter and four pairs of existing metal-on-metal implants of 28 mm diameter were tested in a ten-station hip joint simulator in the presence of a 25 per cent bovine serum solution. The implants were tested in the anatomical position to 5 x 10(6) cycles. The new heads and cups were manufactured from CoCrMo alloy with careful attention being paid to sphericity and surface finish of both components. The wear performance of the new and existing metal-on-metal total hip replacements have been evaluated and compared. The overall wear rates have then been compared with previously reported wear rates for a zirconia-on-polyethylene prosthesis of 22 mm diameter tested on the same simulator. The comparison is taken further by recalling published penetration data for metal-on-polyethylene implants of 22 and 28 mm diameter and converting these to volumetric wear rates. It was found that the heads and cups in metal-on-metal joints wore by almost equal amounts and that the opposing surfaces converged to similar surface roughness as the testing time increased. Steady state wear rates were generally achieved after 1-2 x 10(6) cycles. The mean long-term wear rates for the metal-on-metal prostheses were very low, being 0.36 mm3/10(6) cycles and 0.45 mm3/10(6) cycles for the new implants of 36 mm diameter and established implants of 28 mm diameter respectively. These wear rates compare with 6.3 mm3/10(6) cycles for zirconia-on-ultra-high molecular weight polyethylene tested on the same simulator and representative clinical values for metal-on-polyethylene of 36 mm3/year for heads of 22 mm diameter and a reported range of 60-180 mm3/year for 28 mm heads. These values do not translate directly into numbers of particles, since the metallic debris from metal-on-metal joints is very fine. The number of metallic particles may exceed the number of polyethylene wear particles from an otherwise similar metal-on-polyethylene joint by a factor of 10(3). A detailed discussion of the size and morphology of wear debris and tissue reaction to various forms of debris is beyond the scope of this paper, but the biological response to polymeric, metallic and ceramic wear debris forms a major subject for further study. The present investigation nevertheless confirms the potential of carefully designed and manufactured metal-on-metal total replacement joints for the treatment of diseased and damaged hips.  相似文献   

4.
A five-station hip joint wear simulator was designed and built which featured simplified motion and loading. An elliptical wear path was produced using approximately sinusoidal motion in the flexion/extension and internal/external rotation axes and the dynamic loading approximated to a square wave. Five 28 mm diameter zirconia femoral heads articulated against ultra-high molecular weight polyethylene acetabular cups in 25 per cent bovine serum for 5 x 10(6) cycles. Gravimetric wear measurement was used with moisture absorption compensation using a dynamically loaded soak control. With motion of physiological magnitude, the mean acetabular cup wear rate was 52.2 mm3/10(6) cycles which is comparable with a number of clinical studies.  相似文献   

5.
It is well documented that hard bearing combinations show a running-in phenomenon in vitro and there is also some evidence of this from retrieval studies. In order to investigate this phenomenon, five Birmingham hip resurfacing devices were tested in a hip wear simulator. One of these (joint 1) was also tested in a friction simulator before, during, and after the wear test and surface analysis was conducted throughout portions of the testing. The wear showed the classical running in with the wear rate falling from 1.84 mm3 per 10(6) cycles for the first 10(6) cycles of testing to 0.24 mm3 per 10(6) cycles over the final 2 x 10(6) cycles of testing. The friction tests suggested boundary lubrication initially, but at 1 x 10(6) cycles a mixed lubrication regime was evident. By 2 x 10(6) cycles the classical Stribeck curve had formed, indicating a considerable contribution from the fluid film at higher viscosities. This continued to be evident at both 3 x 10(6) and 5 x 10(6) cycles. The surface study complements these findings.  相似文献   

6.
Polyethylene particle disease is one of the major causes of late aseptic loosening of total hip replacement. Two hard-hard articulations (alumina-on-alumina and metal-on-metal) have been developed in Europe as an alternative to the ultra-high molecular weight polyethylene (UHMWPE) articulations. Even though these hard-hard articulations are on the market and numerous reports have been published about them, only a very limited number of studies allowing a direct in vitro comparison of the two articulations have been published so far. This paper compares in vitro these two types of articulation (alumina-on-alumina and metal-on-metal), which have been tested with a hip simulator for their tribological behaviour using exactly the same experimental methodology. This comparison shows that these two types of hard-hard articulation have very similar abrasive wear behaviour with four main features: 1. A running-in wear period (1 x 10(6) cycles) gives a cumulative wear of about 20 microns with head diameters of 28 mm. 2. After the running-in wear, there is a stabilization of the linear wear behaviour with a low linear wear rate/10(6) cycles for both types of articulation. 3. The volumetric wear rate of both articulations (< 2.0 mm3/year for head diameters of 28 mm) is significantly lower than that observed for metal-on-polyethylene or ceramic-on-polyethylene articulations having the same head diameter. 4. Abrasive wear is readily apparent (indicating a mixed lubrication regime) with both types of articulation. The extremely low wear performance of these articulations is confirmed and they constitute a low-wear alternative to the UHMWPE articulations currently used.  相似文献   

7.
Currently, an artificial hip joint can be expected to last, on average, in excess of 15 years with failure due, in the majority of cases, to late aseptic loosening of the acetabular component. A realistic alternative to the problem of wear in conventional joints is the introduction of bearing surfaces that exhibit low wear and operate in the full fluid-film lubrication regime. Contact analyses and friction tests were performed on compliant layer joints (metal-on-polyurethane) and the design of a prototype ovine arthroplasty model was investigated. When optimized, these components have been shown to achieve full fluid-film lubrication.  相似文献   

8.
A novel 12-station hip joint simulator with an anatomic position of the prosthesis was designed and built. The motion of the simulator consists of flexion-extension and abduction-adduction. The load is of the double-peak type. The validation test was done with three similar 28 mm CoCr-polyethylene joints in diluted calf serum lubricant for 3.3 x 10(6) cycles. The bearing surfaces of the polyethylene cups were burnished, the CoCr heads were undamaged, the wear particles were in the 0.1-1 microm size range, and the mean wear factor of the polyethylene cups was 5.7 x 10(-7) mm(3)/N m. These essential observations were in good agreement with clinical findings. In addition, three similar 50 mm CoCr/CoCr joints, representing the contemporary large-diameter metal-on-metal articulation were tested. The wear of the CoCr/CoCr joints was calculated from the Co and Cr concentrations of the used lubricant quantified with atomic absorption spectroscopy. The bearing surfaces of the CoCr/CoCr joints showed mild criss-cross scratching only. The average wear factor of polyethylene cups was 275 times that of the CoCr/CoCr joints. The tribological behaviour of the large-dia. CoCr/CoCr appeared to be dominated by fluid film lubrication, as indicated by very low frictional heating and wear, making it tribologically superior to the conventional CoCr/polyethylene, and therefore very interesting clinically. In conclusion, the simulator proved to be a valid, reliable, practical, economical, and easy-to-operate tool for wear studies of various hip replacement designs.  相似文献   

9.
The wear of metal-on-metal bearings is affected by various design parameters, such as the clearance or surface roughness. It would be very useful to have a significant indicator of wear according to these design parameters, such as the lambda ratio. Three different batches of cast high- and low-carbon cobalt-chromium hip implants (28 mm, 32 mm, and 36 mm diameters) were tested in a hip joint simulator for 2 x 10(6) cycles. Bovine calf serum was used as lubricant, and the samples were weighed at regular intervals during the test. The predictive role of the lambda ratio on the wear behaviour was investigated. Three different configurations were tested to explore the wear rate for a broad range of lambda ratios. The results of these studies clearly showed that the femoral heads of 36 mm diameter had the best wear behaviour with respect to the other two smaller configurations tested. From a predictive point of view, the lambda ratios associated with the configurations tested could clearly indicate that the femoral heads of 36 mm diameter worked in the mixed-lubrication regime (lambda > 1); all the smallest configurations (28mm size) had lambda < 1, thus showing their aptitude to work in the boundary lubrication regime, with substantially higher volume depletion due to wear. The lambda values associated with the 32 mm size varied in a range around 1 (0.95 < lambda < 1.16), suggesting the possibility of operating in the mixed-lubrication regime.  相似文献   

10.
Metal-on-metal (MoM) hip replacements are commonly used hip implants. However, one of the issues under debate is the interference of friction and wear. The purpose of this feasibility study is to elucidate the performance of palm lubrication between the femoral head and the acetabular cup. In the tribology of hip implants, the use of palm olein, palm kernel oil, and palm fatty acid distillate as synthetic lubricants for human joints has shown tremendous potential. A modified pin-on-disc as hip screening has been used to evaluate the friction and wear on an acetabular cup with an inner diameter of 28 mm. The wear debris was then observed with microscopy image analysis. This study revealed that the physical and unique chemical properties in palm oil can optimize the rate of friction and wear on the metal acetabular cup and thus allow for a stable implant of MoM.  相似文献   

11.
Two wear tests were conducted using the Durham Hip Joint Wear Simulator to investigate the effects of simplified motion and loading on ultra-high molecular weight polyethylene (UHMWPE) acetabular cup wear rates. Bovine serum was used as a lubricant and a gravimetric technique was used to measure wear. The first wear test duration was 7.1 x 10(6) cycles and investigated the effect of simplified loading. This was achieved by using full physiological motion and loading for the first 5 x 10(6) cycles of the test, then physiological motion with simplified loading for the final 2.1 x 10(6) cycles of the wear test. The UHMWPE acetabular cup wear rates using full physiological motion and loading were 32.2 and 51.7 mm3/10(6) cycles against zirconia and CoCrMo femoral heads respectively. Using simplified loading the cup wear rates were 30.1 and 49.2 mm3/10(6) cycles against zirconia and CoCrMo respectively which was not significantly different from wear rates with physiological loading. The effect of simplified motion was investigated in a second wear test of 5.0 x 10(6) cycles duration. Physiological loading was applied across the prosthesis with physiological motion in the flexion/extension plane only. Mean wear of the acetabular component dropped to 0.197 mm3/10(6) cycles. The surfaces of all the acetabular cups were subject to gross examination, optical microscopy and scanning electron microscopy. No notable difference was observed between the cups subjected to physiological motion and loading and those subjected to simplified loading. The cups worn with a single plane of motion had a much smaller worn area and a notable difference in surface features to the other cups. Simplifed loading is therefore an acceptable simplification in simulator testing but simplifying motion to the flexion/extension plane axis only is unacceptable.  相似文献   

12.
Five cobalt-chromium-molybdenum (CoCrMo) and five zirconia femoral head components have been wear tested against 28 mm diameter ultra high molecular weight polyethylene (UHMWPE) acetabular cups for 5 million cycles in the Durham hip joint wear simulator using bovine serum as a lubricant. Wear measurements used gravimetric and volumetric techniques and no statistically significant difference was found between the measurement methods. The wear rates of the acetabular cups against both femoral heads are presented for both measurement methods. The UHMWPE acetabular cups showed a statistically significant higher linear wear rate for the first 2 million cycles than the lower linear wear rate from 2 million cycles to the end of the test, against both femoral head materials. Over the full duration of the wear test, the wear rates of acetabular cups articulating against zirconia femoral heads were lower than against CoCrMo femoral heads. The wear rates up to 2 million cycles and from 2 to 5 million cycles for both femoral head materials were consistent with other studies.  相似文献   

13.
Metal-on-metal hip joint tribology   总被引:3,自引:0,他引:3  
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.  相似文献   

14.
Wear of polyethylene and the resulting wear debris-induced osteolysis remains a major cause of long-term failure in artificial hip joints. There is interest in understanding engineering and clinical conditions that influence wear rates. Fluoroscopic studies have shown separation of the head and the cup during the swing phase of walking due to joint laxity. In ceramic-on-ceramic hips, joint laxity and microseparation, which leads to contact of the head on the superior rim of the cup, has led to localized damage and increased wear in vivo and in vitro. The aim of this study was to investigate the influence of joint laxity and microseparation on the wear of ceramic on polyethylene artificial hip joints in an in vitro simulator. Microseparation during the swing phase of the walking cycle produced contact of the ceramic head on the rim of the polyethylene acetabular cup that deformed the softer polyethylene cup. No damage to the alumina ceramic femoral head was found. Under standard simulator conditions the volume change of the moderately crosslinked polyethylene cups was 25.6 +/- 5.3 mm3/million cycles and this reduced to 5.6 +/- 4.2 mm3/million cycles under microseparation conditions. Testing under microseparation conditions caused the rim of the polyethylene cup to deform locally, possibly due to creep, and the volume change of the polyethylene cup when the head relocated was substantially reduced, possibly due to improved lubrication. Joint laxity may be caused by poor soft tissue tension or migration and subsidence of components. In ceramic-on-polyethylene acetabular cups wear was decreased with a small degree of joint laxity, while in contrast in hard-on-hard alumina bearings, microseparation accelerated wear. These findings may have significant implications for the choice of fixation systems to be used for different types of bearing couples.  相似文献   

15.
This study investigated changes in metal-on-metal (MOM) hip wear and wear particle characteristics arising from a more aggressive patient activity level compared with normal walking. The test hypothesis was that 'severe'-gait conditions will change wear, wear particle sizes, and morphology owing to a decline in joint lubrication. Four carbon MOM hip bearings 40 mm high were subjected to normal-walking and fast-jogging simulations in an orbital hip joint simulator with 25 per cent alpha-calf serum as a lubricant. Co-Cr-Mo wear particles were extracted using an enzymatic method, and prolate ellipsoid equations were used to estimate particle volume and surface area. Fast-jogging simulations generated a sevenfold increase in volumetric wear, a 33 per cent increase in mean wear particle size, and a threefold increase in the number of larger (needle) particles compared with walking. This resulted in a twentyfold increase in total wear particle surface area per 10(6) cycles compared with walking, thereby confirming our hypothesis. The clinical significance of this result suggests that highly active MOM patients may exhibit greater ion release than less active patients.  相似文献   

16.
Anecdotal reporting of osteolysis around cementless modular acetabular components with holes through the metal shell and/or iliac fixation screws has raised concern that such designs may generate excessive particulate debris and/or permit direct access of particulate debris to iliac bone. To address this issue, incidence data are reported on 513 total hip replacements from six different single-surgeon series of total hip arthroplasties performed with six different porous ingrowth acetabular components. With follow-up ranging from 40 to 108 months, a total of 45 pelvic osteolytic lesions were observed (8.8 per cent). Pelvic osteolysis was seen nearly as frequently in the ischium and pubis (21 lesions) as it was in the ilium (24 lesions). It was not possible to explain ischial and pubic osteolysis by holes and/or screws through the acetabular component shell. There was no direct correlation between the presence of screw holes or screws and the incidence of pelvic osteolysis. The incidence of pelvic osteolysis around modular components with holes through the shell was 4.5 per cent (14 of 313 hips). The incidence of pelvic osteolysis with solid-shell components was 15.5 per cent (31 of 200). The incidence of pelvic osteolysis around acetabular reconstructions with screws was 2.3 per cent (3 of 133). The incidence of pelvic osteolysis in reconstructions without screws was 11.1 per cent (32 of 380). The incidence of pelvic osteolysis in one-piece acetabular components (polyethylene pre-fixed in the metal shell) was 12.7 per cent (21 of 165) and the incidence of pelvic osteolysis with the modular components was 6.9 per cent (24 of 348). In each comparison, the incidence of pelvic osteolysis was actually lower in the group assumed to be at increased risk. Based on this review there does not appear to be a direct relationship between holes and/or screws through an acetabular component and the development of pelvic osteolysis. The incidence of pelvic osteolysis was associated with larger head diameters and longer follow-up. While screw holes may provide an access channel in specific cases, the present data indicate that the simple elimination of holes through the acetabular shell will not eliminate pelvic osteolysis. Regardless of other acetabular component design features, joint fluid and polyethylene wear particles from the femoral-acetabular articulation can gain access to bone behind an acetabular component via the peripheral implant-bone interface through regions without sufficient contact or tissue ingrowth. The development of pelvic osteolysis is multifactorial and includes the total volumetric wear of polyethylene as well as specific features of the acetabular component design and reconstruction technique.  相似文献   

17.
Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements   总被引:4,自引:0,他引:4  
With the increased clinical interest in metal-on-metal and ceramic-on-ceramic total-hip replacements (THRs), the objective of this hip simulator study was to identify the relative wear ranking of three bearing systems, namely CoCr-polyethylene (M-PE), CoCr-CoCr (M-M) and ceramic-on-ceramic (C-C). Volumetric wear rates were used as the method of comparison. The seven THR groupings included one M-PE study, two M-M studies and four C-C studies. Special emphasis was given to defining the 'run-in' phase of accelerated wear that rigid-on-rigid bearings generally exhibit. The hypothesis was that characterization of the run-in and steady state wear phases would clarify not only the tribological performance in vitro but also help correlate these in vitro wear rates with the 'average' wear rates measured on retrieved implants. The implant systems were studied on multichannel hip simulators using the Paul gait cycle and bovine serum as the lubricant. With 28 mm CoCr heads, the PE (2.5 Mrad/N2) wear rates averaged 13 mm3/10(6) cycles duration. This was considered a low value compared with the clinical model of 74 mm3/year (for 28 mm heads). Our later studies established that this low laboratory value was a consequence of the serum parameters then in use. The mating CoCr heads (with PE cups) wore at the steady state rate of 0.028 mm3/10(6) cycles. The concurrently run Metasul M-M THRs wore at the steady state rate of 0.119 mm3/10(6) cycles with high-protein serum. In the second Metasul M-M study with low-protein serum, the THR run-in rate was 2.681 mm3/10(6) cycles and steady state was 0.977 mm3/10(6) cycles. At 10 years, these data would predict a 70-fold reduction in M-M wear debris compared with the clinical PE wear model. All M-M implants exhibited biphasic wear trends, with the transition point at 0.5 x 10(6) cycles between run-in and steady state phases, the latter averaging a 3-fold decrease in wear rate. White surface coatings on implants (coming from the serum solution) were a confounding factor but did not obscure the two orders of magnitude wear performance improvement for CoCr over PE cups. The liners in the alumina head-alumina cup combination wore at the steady state rate of 0.004 mm3/10(6) cycles over 14 x 10(6) cycles duration (high-protein serum). The zirconia head-alumina cup THR combination wore at 0.174 and 0.014 mm3/10(6) cycles for run-in and steady state rates respectively (low-protein serum). The zirconia head and cup THR combination wore slightly higher initially with 0.342 and 0.013 mm3/10(6) cycles for run-in and steady state rates respectively. Other wear studies have generally predicted catastrophic wear for such zirconia-ceramic combinations. It was noted that the zirconia wear trends were frequently masked by the effects of tenacious white surface coatings. It was possible that these coatings protected the zirconia surfaces somewhat in this simulator study. The experimental ceramic Crystaloy THR had the highest ceramic run-in wear at 0.681 mm3/10(6) cycles and typical 0.016 mm3/10(6) cycles for steady state. Since these implants represented the first Crystaloy THR sets made, it was likely that the surface conditions of this high-strength ceramic could be improved in the future. Overall, the ceramic THRs demonstrated three orders of magnitude wear performance improvement over PE cups. With zirconia implants, while the cup wear was sometimes measurable, head wear was seldom discernible. Therefore, we have to be cautious in interpreting such zirconia wear data. Identifying the run-in and steady state wear rates was a valuable step in processing the ceramic wear data and assessing its reliability. Thus, the M-M and C-C THRs have demonstrated two to three orders of reduction in volumetric wear in the laboratory compared with the PE wear standard, which helps to explain the excellent wear performance and minimal osteolysis seen with such implants at retrieval operations.  相似文献   

18.
To evaluate the functioning of the Durham hip joint wear simulator, the wear rates of ultra high molecular weight polyethylene (UHMWPE) and polytetrafluoroethylene (PTFE) acetabular cups articulating against 22 mm diameter cobalt-chromium-molybdenum (CoCrMo) femoral heads were studied. A wear test was conducted in a lubricant of distilled water at 37 degrees C for a duration of 4.8 million cycles. The average penetration rate for the CoCrMo femoral heads against UHMWPE acetabular cups was 0.03 mm/10(6) cycles, while penetration rate for PTFE cups was some twenty times greater. These results are of a similar order of magnitude to other simulator studies in distilled water and are in a similar ratio to clinical data.  相似文献   

19.
The comparative performance of artificial hip joints has been extensively investigated in vitro through measurements of wear volumes. In vivo a major cause of long-term failure is wear-debris-induced osteolysis. These adverse biological reactions are not simply dependent on wear volume, but are also controlled by the size and volumetric concentration of the debris. A novel model is presented which predicts functional biological activity; this is determined by integrating the product of the biological activity function and the volumetric concentration function with the wear volume over the whole particle size range. This model combines conventional wear volume measurements with particle analysis and the output from in vitro cell culture studies to provide a new indicator of osteolytic potential. The application of the model is demonstrated through comparison of the functional biological activity of wear debris from polyethylene acetabular cups articulating under three different conditions in a hip joint simulator.  相似文献   

20.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号