首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fabricated L10 FePt thin films by sputtering in reactive oxygen on polycrystalline glass substrates, and we investigated the magnetic properties and crystallographic orientations of the films. Oxygen addition during the FePt deposition promoted heteoroepitaxial growth by decreasing the lattice misfit with the Ag underlayer. In an oxygen/argon ratio of 1.5-3.0 vol.%, the in-plane lattice parameter of the FePt films expanded, and the lattice misfit with the Ag underlayer decreased from 6.3 to 3.9% in the as-deposited state, as determined by grazing incidence X-ray diffraction (GIXRD). Annealing at 700degC for 1 min produced a heteroepitaxially grown L10 (001) texture with a large out-of-plane coercivity of 8.8 kOe and a nucleation field of kOe. Transmission electron microscopy showed that average grain size in the as-deposited films was about 4-5 nm and was in the range of 10-15 nm in the annealed films, indicating that there was some grain growth.  相似文献   

2.
The structural and magnetic properties of L10-FePt/Ag films were studied by X-ray diffraction and a vibrating sample magnetometer. The FeAg/Pt films were obtained by depositing FeAg thin films on thermally oxidized Si (001) substrates via magnetron sputtering and Pt layers on their surface after annealing FeAg thin films at 400 °C with and without an out-of-plane magnetic field of 10 kOe. These films were further annealed at various temperatures to obtain L10-FePt phase. The results indicated that the pre-annealing of FeAg thin films under 10 kOe magnetic field caused (001) orientation of Fe particles, and the deposition of Pt layer on such orientated underlayers reduced the ordering temperature of FePt in FeAg/Pt films, realizing the L10-FePt phase at 400 °C. The higher coercivity and ordering degree were also observed in the samples, compared with those pre-annealed without magnetic field at the same annealing condition.  相似文献   

3.
Electrodeposited thick films of FePt (with the nominal composition 50 % Fe/50 % Pt) on three metallic (Au, Ag, Au) underlayers were annealed at various temperatures. The magnetic and morphological properties of the resulting films were then monitored. The Au and Ag underlayers promoted the growth of the (bct) L10 FePt phase. The greater growth of this phase in the films deposited on the Ag underlayer led to the crystallographic texturing in the (001) direction. This was accompanied by a significant magnetic anisotropy and a negative shift of the remanent magnetization in the presence of an applied field. The coercivity of the Ag underlayer films increased to 18 kOe while the coercivity of the Au underlayer films decreased to ~2 kOe when the annealing temperature was increased to 800 °C.  相似文献   

4.
During ordering process of face centered tegragonal (fct) L1(0) phase of the FePt alloy, there exist three growth variants of axes (001) from original disordered fcc structured phase. When FePt film was directly deposited on the MgO (001) substrate, the variant perpendicular to the film plane grew, resulting in a low out-of-plane coercivity of 1.3 kOe. By using Cu underlayer, two variants lying in the film plane got same chance to grow, which caused an in-plane perpendicular alignment of the tetragonal axes of FePt L1(0) phases. The crystallographic relationship between Cu and FePt layers is Cu (100)<100>//fct FePt (100)<100>. A high in-plane coercivity of 4.6 kOe was obtained due to the high density of micro-defects (mcro-twins, anti-phase boundaries, etc.) in the film plane. This work demonstrated a way of selecting the growth variants of ordering process to adjust the magnetic properties of the ordered FePt thin films.  相似文献   

5.
FePt multilayer films were deposited on Si(1 0 0) substrate with thermally grown SiO2 film and sputtered Ag underlayer at room temperature by dc magnetron sputtering and subsequently annealing in vacuum. Experimental results suggest that proper thickness of Ag underlayer and slightly rich of Fe content can effectively induce the (0 0 1) texture of FePt films. A Fe57.4Pt42.6 thin film on the 8 nm Ag underlayer exhibits a large perpendicular coercivity of 7.6 kOe with magnetic remanence close to 1.  相似文献   

6.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

7.
The single-layered FePt films with thickness in the range of 5 to 50 nm are deposited directly on Si(100) substrate without underlayer, then post annealed at 700 degrees C by rapid thermal annealing (RTA) technique. As the film thickness of FePt is over 20 nm, the L1(0) FePt(111) preferred orientation is presented and tended to in-plane magnetic anisotropy. However, the L1(0) FePt(001) texture is obtained and exhibited perpendicular magnetic anisotropy as the film thickness is decreased to 10 nm. Its perpendicular coercivity (Hc(perpendicular)), saturation magnetization (Ms) and perpendicular squareness (S(perpendicular)) are 14.8 kOe, 795 emu/cm3 and 0.79, respectively. On the other hand, both the grain size and domain size of FePt film decrease with decreasing the film thickness of FePt. The grain size for 10-nm FePt film is as small as 9.7 nm with domain size of 123 nm, which reveal its significant potential as perpendicular magnetic recording media for ultra high-density recording.  相似文献   

8.
The perpendicular anisotropic magnetic properties of in-situ deposited FePt/Pt/Cr trilayer films were elucidated as functions of the deposition temperature and the sputtering rate of the FePt magnetic layer. Ordered L10 FePt thin films with perpendicular anisotropy and a (001) texture can be developed at a temperature as low as 300 °C with the sputtering of a FePt layer at a low rate. The larger Pt(001)[100] lattice induced an expansion of the FePt a- and b-axis, leading to the contraction of the FePt c-axis, enabling the epitaxial growth of the L10 FePt(001) texture to occur. A low rate of sputtering of the FePt thin film promotes the formation of the magnetically hard FePt(001) texture on the surface of the Pt(001) buffer layer at low temperature, while the high sputtering rate of FePt layer suppresses the phase transformation.  相似文献   

9.
FePt thin films with 40 nm thickness were prepared on thermally oxidized Si (001) substrates by dc magnetron sputtering at the nominal growth temperature 375 °C. The effects of annealing on microstructure and magnetic properties of FePt thin films were investigated. The as-deposited FePt thin films show soft magnetic properties. After the as-deposited FePt thin films were annealed at various temperatures and furnace cooled, it is found that the ordering temperature of L10 FePt phase could be reduced to 350 °C. For FePt thin films annealed at 350 °C, the in-plane and out-of-plane coercivities of the films increased to 510 and 543 kA/m, respectively, and the films had hard magnetic properties. A highly (001) orientation was obtained, when FePt thin films were annealed at 600 °C. And the hysteresis loops of FePt thin films annealed at 600 °C show out-of-plane magnetic anisotropy.  相似文献   

10.
FePt/SiO2 nanogranular thin films have been prepared by molecular-beam epitaxy system on MgO (001) substrates with the method of insertion dual SiO2 layers into Fe/Pt multilayer films. We report the relationships between the inserting thickness of SiO2 layers and the microstructural and magnetic properties of FePt thin films. It indicated the nanogranular FePt thin films were successfully formed by inserting amorphous SiO2 layers into the Fe/Pt films. The reduction of grain/domain size and isolation of FePt particles can be achieved by such insertion and maintain (001) texture. The average grain size of FePt films with 5-nm SiO2 insert layers is estimated to be around 8 nm, while domain rotation is enhanced depicting a decoupling of intergrain interaction. The isolated grains are less magnetically coupled in the rotation mode and the reversal of magnetization is more independent  相似文献   

11.
The crystallographic structure and magnetic properties of L1(0) FePt thin films deposited at different substrate temperature were investigated systematically in present paper. The ordered L1(0) FePt thin film was developed when substrate temperature is higher than 300 degrees C. The ordering parameter S, the degree of tetragonality c/a, and the epitaxial quality of the films, increase with increasing substrate temperature. The squareness and coercivity in the direction perpendicular to the film increase as the substrate temperature is increased and the perpendicular anisotropy is developed when the substrate temperature is higher than 300 degrees C. The magnetic anisotropy Ku increases with increasing substrate temperature and it might be concluded that the magnetic anisotropy of ordered L1(0) FePt thin films mainly stems from the magnetocrystalline origin and also possibly due to pair ordering mechanism.  相似文献   

12.
Y.F. Ding  J.S. Chen  B.C. Lim  B. Liu 《Thin solid films》2009,517(8):2638-2647
FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 °C. When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 °C. The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 °C to 350 °C), though the ordering degree and coercivity of the films increased with increased substrate temperature.  相似文献   

13.
The FePt films with various thicknesses (t) of 5 to 50 nm are deposited on Si(100) substrate without any underlayer by in-situ annealing at substrate temperature (Ts) of 620 °C. A strong (001) texture of L10 FePt film is obtained and presents high perpendicular magnetic anisotropy as the film thickness increases to 30 nm. By further increasing the thickness to exceed 30 nm, the (111) orientation of L10 FePt is enhanced greatly, indicating that the quality of perpendicular magnetic anisotropy degrades when the thickness of the FePt film is greater than 30 nm. The single-layered FePt film with thickness of 30 nm by in-situ depositing at 620 °C shows good perpendicular magnetic properties (perpendicular coercivity of 1033 kA/m (13 kOe), saturation magnetization of 1.08 webers/m2 and perpendicular squareness of 0.91, respectively), which reveal its significant potential for perpendicular magnetic recording media.  相似文献   

14.
采用磁控溅射法在硅基片上生长FePt纳米颗粒薄膜。在硅片表面生长MgO籽层用来引发FePt合金薄膜的fct织构,加入C来减小其颗粒尺寸,加入Ag来增强其L10有序度。采用X射线衍射仪(XRD)、超导量子干涉仪(SQUID)和高分辨率透射电镜(TEM)对FePt薄膜进行表征。结果表明制备的薄膜样品具有优良的L10相结构,其M-H曲线表明方形度很好,垂直矫顽力HC有2467 kA/m,颗粒大小为10.4 nm。该薄膜非常适合用做下一代高密度磁存储媒质,可有效提高信息存储密度。  相似文献   

15.
To find a method to form nano-size FePt alloy for ultra-high density magnetic recording media, this work concentrated on the formation mechanisms of nano-island FePt films on amorphous glass substrates. FePt films of different thicknesses (1-10 nm) were deposited on amorphous glass substrates and post-annealed at 700 °C for 10 and 30 min. The configuration of the film changed during the annealing process due to the surface energy difference between the glass substrate and FePt alloy. Investigation of the microstructures and magnetic properties of the ordered L10 FePt films revealed that the 1 nm FePt film annealed at 700 °C for 10 min had perpendicular magnetic anisotropy and good reproducibility of forming well-separated FePt nano-size islands for ultra-high density magnetic recording media.  相似文献   

16.
CoPt/Ag films were prepared by magnetron sputtering on glass substrates and subsequent annealing. The dependence of degree of ordering and magnetic properties on Ag film thickness and annealing conditions were investigated. It was found that the Ag underlayer played a dominant role in inducing the (001) texture of the CoPt film after annealing. CoPt films with a thickness about 20 nm and Ag underlayers with a thickness about 70 nm are easy to obtain a large degree of ordering and a perpendicular magnetic anisotropy after annealing at 700 degrees C for 30 min. CoPt/Ag films with out-of-plane coercivity (Hc (perpendicular)) in the range of 13.5-14.0 kOe and a out-of-plane squareness (S(perpendicular)) of 0.97 were obtained after annealing at 700 degrees C for 30 min. Ag underlayer is beneficial to enhance the Hc(perpendicular)and S(perpendicular) of CoPt film significantly. The degree of ordering and perpendicular magnetic properties of the CoPt films which deposited on Ag underlayer are larger than those of the single layer CoPt films.  相似文献   

17.
Sputter-deposited FePt films exhibit an in-plane magnetic anisotropy when MgO is used as the capped layer. The perpendicular magnetic anisotropy of FePt films can be enhanced by introducing a Ag capped layer instead of a MgO capped layer. Although the in-plane coercivity (Hc//) of FePt films decreases slightly after introducing a Ag capped layer instead of a MgO capped layer, the perpendicular coercivity (Hc) is increased significantly from 3169 Oe to 6726 Oe. Auger electron spectroscopy analysis confirms that Ag atoms diffuse from the capped layer into the FePt magnetic layer and are mainly distributed at the grain boundary of FePt. This phenomenon results in enhancement of the grain boundary energy and inhibition of grain growth, thus increasing the perpendicular coercivity and reducing the grain size of the FePt film.  相似文献   

18.
The soft/hard Fe/FePt film with perpendicular magnetization has been deposited on a glass substrate. The (001) oriented L10 FePt film was obtained when annealed by rapid thermal process at 800 °C and a Fe layer was deposited at room temperature with thicknesses of 2 nm to 20 nm. Controlling the Fe layer thickness allowed modification of the hysteresis loops from out-of-plane rigid magnet to in-plane exchange-spring like magnet due to the nanometer scale interface coupling. When the Fe layer thickness increased to 2 nm, the out-of-plane coercivity is reduced to 5.9 kOe but the remanence ratio (0.98) is still high. The Fe (2 nm)/FePt film shows perpendicular magnetization with linear in-plane hysteresis loop. The remanence ratio is reduced to 0.85 when the Fe layer thickness increased to 5 nm. When the Fe layer thickness was varied up to 10-20 nm, the in-plane hysteresis loop shows exchange-spring like behavior with two-step magnetization reversal processes. The films with perpendicular coercivity were moderated by the thickness of soft magnetic layer.  相似文献   

19.
In this report, the effect of simultaneously adding two dopants (C and Ta2O5) in FePt was investigated. (Fe55Pt45)79C21-(x vol%) Ta2O5 films (where x = 0% to 20%) were prepared using both low and high power magnetron sputtering on MgO (2 nm)/CrRu (30 nm) underlayers with in-situ heating at 350 degrees C. Films deposited at low power showed a decrease in exchange coupling with increasing Ta2O5 content. Out-of-plane coercivity of 7.2 kOe was observed even with up to 20 vol% Ta2O5. X-Ray diffraction spectra showed presence of FePt(001) texture for all compositions of Ta2O5 ranging from 0 to 20 vol% suggesting that the perpendicular anisotropy was maintained even with up to 20 vol% of dopant content. Films deposited at high power showed a different behavior with an initial increase in out-of-plane coercivity to 8.2 kOe and a reduction in exchange coupling with loop slope parameter (alpha) approaching a fully decoupled value of 1. Further increase in doping content led to deterioration in the out-of-plane coercivity, as well as an increase in the exchange coupling.  相似文献   

20.
L10-FePt thin films were deposited on silicon substrates with the structure of Si/CrRu/MgO/FePt. The magnetic and microstructural properties were optimized by varying the FePt sputter pressure and temperature, as well as the thicknesses of all three layers. High coercivity films greater than 1.8 T were grown when the FePt sputter pressure was at 1.33 Pa with a thickness of only 4 nm, on CrRu and MgO underlayers as thin as 10 nm and 2 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号