首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subsolidus phase relations in the SrO–Ga2O3–B2O3 system were investigated. The system contains 10 binary compounds and two ternary compounds, and can be divided into 15 three-phase regions. The new ternary compound SrGaBO4 has two modifications (- and β-phases), both of which crystallize in the orthorhombic system but with different space groups.  相似文献   

2.
Employing a Tian-Calvet-type calorimeter operating in the scanning mode at temperatures from 1120 to 1220 K, the enthalpy change, ΔdH, associated with the decomposition of GaBO3 (=1/2β-Ga2O3+1/2B2O3(liq.)) and the corresponding decomposition temperature, Td, were determined: ΔdH=30.34±0.6 kJ/mol, Td=1190±5 K. Using the transposed-temperature-drop method the thermal enthalpy, H(T)−H(295 K), of GaBO3 was measured as a function of temperature, T, in the region from 760 to 1610 K; the results obtained are
[H(T)−H(295 K)]/(J/mol)=104.8·(T/K)−31 300 (760 K<T<1190 K),
[H(T)−H(295 K)]/(J/mol)=138.8·(T/K)−41 480 (1190 K<T<1590 K).
On the basis of the experimental results, the enthalpy and entropy of formation, ΔfH and ΔfS, respectively, of GaBO3 from the component oxides were derived:
ΔfH=−30.34 kJ/mol,ΔfS=−25.50 J/(K·mol) at 1190 K,
ΔfH=−10.55 kJ/mol,ΔfS=−5.48 J/(K·mol) at 298 K.
The enthalpy versus temperature curve shows, apart from a step associated with the decomposition of GaBO3, a further step at 1593 K which is attributed to a monotectic equilibrium.  相似文献   

3.
The subsolidus phase relations in the ZnO–MoO3–B2O3, ZnO–MoO3–WO3 and ZnO–WO3–B2O3 ternary systems have been investigated by the means of X-ray powder diffraction (XRD). There is no ternary compound in all the systems. There are five binary compounds and five tie lines in the ZnO–MoO3–B2O3 system. This system can be divided into six 3-phase regions. There are three binary compounds and three tie lines in the ZnO–MoO3–WO3 system. This system can be divided into four 3-phase regions. There are four binary compounds and four tie lines in the ZnO–WO3–B2O3 system. This system can be divided into five 3-phase regions. The possible component regions for ZnO single crystal flux growth were discussed. The phase diagram of Zn3B2O6–ZnWO4 pseudo-binary system has been constructed, and the result reveals this system is eutectic system. The eutectic temperature is 1007 °C and eutectic point component is 70 mol% Zn3B2O6.  相似文献   

4.
Chemical vapor deposition (CVD) of zirconium oxide (ZrO2) from zirconium acetylacetonate Zr(acac)4 has been thermodynamically investigated using the Gibbs’ free energy minimization method and the FACTSAGE program. Thermodynamic data Cp°, ΔH° and S° for Zr(acac)4 have been estimated using the Meghreblian–Crawford–Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO2 can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO2 and the other one corresponds to a mix of monoclinic phase of ZrO2 and graphite carbon.  相似文献   

5.
The phase diagrams of the CuGaSe2–SiSe2 and CuInSe2–SiSe2 systems were constructed using the results of differential thermal and X-ray phase analysis. Both systems are of the eutectic type with the eutectic point coordinates 75 mol% SiSe2, 1042 K (CuGaSe2–SiSe2); 67 mol% SiSe2, 1083 K (CuInSe2–SiSe2). Solid solutions based on CuGaSe2 and CuInSe2 were discovered in these systems; their extent at 670 K being 24 and 25 mol% SiSe2, respectively. The crystal structure of the limiting compositions of these solid solutions was refined.  相似文献   

6.
A thermodynamic modeling of the CeO2–CoO phase diagram was performed with recent experimental data. The excess Gibbs energies of the solution phases were described on the basis of the simple regular solution. A consistent set of optimized interaction parameters was derived for describing the Gibbs energy of each phase in this system leading to a good fit between calculation and experimental data. The liquidus, solidus, and solvus curves were calculated and also the lattice stabilities of the components were evaluated.  相似文献   

7.
A ternary mixture BaCO3–Al2O3–SiO2 was mechanically activated for different lengths of time. Chemical composition of the mixture corresponded to BaAl2Si2O8–BAS. As a function of activation time, reaction course was followed in the temperature range 750–1200°C. Reaction of celsian formation was followed using thermogravimetry as well as conventional and high-temperature X-ray diffractometry. The obtained data show that reaction rate increases with prolonged activation time, under the same conditions of thermal treatment. Formation of hexacelsian via a series of solid state reactions involving Ba-silicates, was favoured with increasing activation time. Direct formation of monoclinic celsian was retarded, however, with prolonged activation.  相似文献   

8.
Based on the results of a physico-chemical analysis, the equilibrium diagram of the In2Te3–Cr3Te4 section of the In–Cr–Te ternary system has been constructed. The section is quasi-binary and at the basic component ratio of 1:1 the ternary compound In2Cr3Te7 with a peritectic melting character is formed. Both basic components at 300 K have homogeneity regions with limits of 5.5 and 2 mol% from the In2Te3 and Cr3Te4 sides, respectively.  相似文献   

9.
The binary system H2O–Fe(NO3)3 has been investigated at temperature ranging between –25 and 47 °C.The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied at −15 and −25 °C by using a synthetic method based on conductivity measurements which allows all the characteristic points of the isotherms to be determined, and the stable solid phases which appear are respectively: ice, Fe(NO3)3·9H2O, Fe(NO3)3·6H2O, Co(NO3)2·9H2O, Co(NO3)2·6H2O and Co(NO3)2·3H2O.  相似文献   

10.
Li2O–MoO3–B2O3 glasses containing different amounts of V2O5, ranging from 0 to 1.5 mol%, were prepared. The dielectric properties (viz., constant ′, loss tan δ, AC conductivity σac over a wide range of frequency and temperature) have been studied as a function of the concentration of vanadium ions. The variation of AC conductivity with the concentration of V2O5 passes through a maximum at 0.8 mol% V2O5. In the high-temperature region, the AC conduction seems to be connected with the mixed conduction, viz., electronic and ionic conduction. The dielectric relaxation effects exhibited by these glasses have been analyzed quantitatively by pseudo Cole–Cole plot method and the spreading of relaxation times has been established. Further analysis of these results has been carried out with the aid of the data on ESR, IR and optical absorption spectra.  相似文献   

11.
The P2O5 + ZnO, ZrO2 + TiO2, B2O3 and a low-melting-point CaO–B2O3–SiO2 glass (LG) are selected as the sintering additives, and the effect of their additions on the microwave dielectric properties, mechanical properties and microstructures of CaO–B2O3–SiO2 system glass ceramics is investigated. It is found that the sintering temperature of pure CBS glass is higher than 950 °C and the sintering range is about 10 °C. With the above additions, the glass ceramics can be sintered between 820 °C and 900 °C. The dielectric properties of the samples are dependent on the additions, densification and microstructures of sintered bodies. The major phases of this material are CaSiO3, CaB2O4 and SiO2. With 10 wt% B2O3 and LG glass additions, the CBS glass ceramics have better mechanical properties, but worse dielectric properties. The r values of 6.51 and 7.07, the tan δ values of 0.0029 and 0.0019 at 10 GHz, are obtained for the CBS glass ceramics sintered at 860 °C with 2 wt% P2O5 + 2 wt% ZnO and 2 wt% ZrO2 + 2 wt% TiO2 additions, respectively. This material is suitable to be used as the LTCC material for the application in wireless communications.  相似文献   

12.
The absorption and emission spectroscopies of RE3+ ions embedded in a new phase, LaGa3O6, owing to the La2O3–Ga2O3 binary system (RE=Pr, Nd, Eu) are discussed. The 2S+1LJ level degeneracies are completely lifted in accordance with the low point symmetry of the site occupied by the rare earth ion in LaGa3O6. The energy level schemes deduced from the data are reproduced by considering a crystal field (CF) effective Hamiltonian involving the nine real and five imaginary parameters required for the C2 or Cs symmetry of the rare earth site. The rms deviation is satisfactory for the three simulations. However, the strong variation of the CF parameters between Pr3+ and Eu3+ in LaGa3O6 suggests the possible limit of existence of the phase, intimately correlated to small variations of the rare earth ionic radius.  相似文献   

13.
The synthesis of homogeneous and pure silica–alumina binary glasses doped with rare-earth (RE) ions such as Er3+ is currently a key challenge for the development of integrated optics devices such as lasers, optical amplifiers or waveguides. In this study Er3+-doped SiO2–Al2O3 films were prepared by the sol–gel route. Aluminium sec-butoxide, Al(O-sec-C4H9)3 (ASB), and tetraethoxysilane, Si(OC2H5)4 (TEOS), were used as glass oxide precursors, whereas erbium was introduced as Er(NO3)3. The alumina content in the silica matrix was 10 at.%, while erbium doping ranged between 200 and 5000 ppm. The preparation of the starting sol–gel solution and the layer deposition by a dip-coating procedure were performed in dry-box under nitrogen atmosphere. The obtained films were subsequently annealed in air between 300 and 1000 °C. After treatment at 500 °C, layers 200 nm thick were obtained. The composition, microstructure and surface morphology of the films were investigated by X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). Crack-free, transparent, high purity films were obtained, characterised by compositional and microstructural homogeneity.  相似文献   

14.
Nanocomposites of yttria-stabilized zirconia (YSZ), containing 20 and 40 wt% alumina, were prepared by a two-step process: (1) fine-particle aggregates of the constituent phases were melted and homogenized in a high enthalpy plasma, prior to rapid quenching in water to obtain metastable starting powders, and (2) the metastable powders were consolidated by hot isostatic pressing (HIP), under conditions designed to ensure the formation of nanocomposites by controlling the metastable-to-stable phase transformation during sintering. In both cases, the resulting nanocomposites had completely uniform structures, comprising 27 and 50 vol% of -Al2O3 in a tetragonal YSZ matrix phase. Measurements of hardness and indentation toughness were correlated with observed structures.  相似文献   

15.
A valence change from Eu3+ to Eu2+ was observed in the europium ion-doped ZnO–B2O3–P2O5 glasses prepared at high temperature in air. The fluorescence emission spectrum of the sample consists of a broad emission band ascribed to the 5d–4f transition of Eu2+ ion and sharp emission peaks assigned to the transitions of 5Do7FJ (J = 0, 1, 2, 3, and 4) of Eu3+ ion, indicating that part of Eu3+ can be reduced into Eu2+ in the glass. A charge compensation model is proposed. The rigid tetrahedral network structure of glasses plays an important role in stability of Eu2+. The fabrication conditions are also studied.  相似文献   

16.
PbO–Sb2O3–B2O3 glasses mixed with different concentrations of TiO2 (ranging from 0 to 1.5 mol.%) were synthesized. The samples are characterized by X-ray diffraction, scanning electron microscopy and DSC techniques. A variety of properties, i.e. optical absorption, photoluminescence, infrared, ESR spectra, magnetic susceptibility, photo-induced birefringence (PIB) and dielectric properties (constant ′, loss tan δ, a.c. conductivity σac over a wide range of frequency and temperature) of these glass–ceramics have been explored. The analysis of these results indicated that Ti ion surrounding ligands play principal role in the observed PIB and the sample crystallized with 0.8 mol.% of TiO2 is the most suitable for the applications in non-linear optical devices.  相似文献   

17.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3, CrO-Cr2O2-Al2O3, and CrO-Cr2O2-CaO systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air in the case of the first two systems and toP O 2 = 10−3 atm for the CrO-Cr2O3-CaO system. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasichemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

18.
We applied our model to the enthalpy of mixing data of the binary systems Na2O-SiO2, Na2O-GeO2, Na2O-B2O3, Li2O-B2O3, CaO-B2O3, SrO-B2O3, and BaO-B2O3. The most stable composition in the liquid, that is where the enthalpy of mixing is most negative, is with a metal-oxygen ratio of 4 to 3, for monovalent metals (Na and Li) and 3 to 4 for divalent metals (Ba and Ca) in liquid silicates or borates. The same applies to the CaO-SiO2, CaO-Al2O3, PbO-B2O3, PbO-SiO2, ZnO-B2O3, and ZnO-SiO2 systems. The oxygen to metal ratio, its constant value in various types of systems, reflects and describes the structure of the liquid. Using the analyzed enthalpies of mixing data and the available phase diagrams, we calculated the enthalpies of formation of the various binary compounds. The results are in excellent agreement with data in the literature that were obtained from direct solid-solid calorimetry.  相似文献   

19.
The subsolidus phase relations of the ternary system ZnO–P2O5–MoO3 were investigated by means of X-ray diffraction (XRD). Seven binary compounds and eight 3-phase regions were determined, and no ternary compound was found in this system. The phase diagram of pseudo-binary system Zn3(PO4)2–Zn3Mo2O9 was also constructed through XRD and differential thermal analysis (DTA) methods, and the result reveals this system is eutectic system. The eutectic temperature is 904 °C and the corresponding component is 30% Zn3Mo2O9 and 70% Zn3(PO4)2.  相似文献   

20.
Zirconia and alumina based ceramics present interesting properties for their application as implants, such as biocompatibility, good fracture resistance, as well as high fracture toughness and hardness. In this work the influence of sintering time on the properties of a ZrO2–Al2O3 composite material, containing 20 wt% of Al2O3, has been investigated. The ceramic composites were obtained by sintering, in air, at 1600 °C for sintering times between 0 and 1440 min. Sintered samples were characterized by microstructure and crystalline phases, as well as by mechanical properties. The grain growth exponents, n, for the ZrO2 and Al2O3 were 2.8 and 4.1, respectively, indicating that different mechanisms are responsible for grain growth of each phase. After sintering at 1600 °C, the material exhibited a dependency of hardness as function of sintering time, with hardness values between 1500 HV (120 min) and 1310 HV (1440 min) and a fracture toughness of 8 MPa m1/2, which makes it suitable for bioapplications, such as dental implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号