首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
非线性系统神经网络稳定自适应控制器的研究   总被引:5,自引:0,他引:5  
陆璐  李天石 《控制与决策》1998,13(5):598-602
提出一种利用神经网络逼近具有不确定性及随机干扰的仿射非线性系统新算法,采用自适应控制率在线调节网络权值,基于H∞控制选择控制量以削减噪声干扰,并从理论上证明了采用该算法后系统的全局稳定性。将该算法用于气动系统位置跟踪,仿真结果表明该算法具有跟踪精度高,收敛速度快的优点。  相似文献   

2.
基于神经网络的一类非线性连续系统的稳定自适应控制*   总被引:9,自引:0,他引:9  
本文将神经网络作为非线性系统的模型,提出能够对一类非线性连续系统进行有效控制的自适应控制结构和算法,该控制方案不仅能经类非线性系统的跟踪控制问题,而且由于将变结构控制技术动用于其中,整个闭环控制系统还能克服许多神经网络控制系统中存在的稳定性问题。由稳定性理论可推证整个闭环控制系统渐近稳定和参数和渐近收敛的特性。  相似文献   

3.
任雪梅 《信息与控制》1998,27(4):316-320
利用神经网络作为非线性系统的模型,研究了一类非线性系统的神经网络自适应控制问题,设计出的自适应控制器具有如下的特点:(1)网络仅值是基于参考误差信号学习的投影算法来调节,这样可保证权值的有界性;(2)为了减小神经网络参数估计误差对跟踪误差的影响,提出了根据参考误差信号实时修正神经网络输入的方法。仿真结果对该控制方案进行了验证。  相似文献   

4.
李鸿儒  边春元 《控制与决策》1999,14(11):511-515
基于递归神经网络给出了仅含一个非线性环节的一类非线性系统的自适应控制方案。该方案采用递归神经网络辨识非线性系统中的未知非线性环节。沿用广义最小方差自校正控制方法,可以解决非线性环节未知和工作点变化时传统方法无法控制的自适应控制问题。理论分析和仿真结果表明,该方法具有很好的控制效果。  相似文献   

5.
一类非线性系统的间接自适应模糊控制器的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
张天平 《控制与决策》2002,17(2):199-202
研究一类不确定非线性系统的间适应模糊控制问题。基于Wang提出的监督控制方案,利用Ⅰ型模糊系统的逼近能力,提出一种自适应模糊控制器设计的新方案,该方案通过引入最优逼近误差的自适应补偿项来消除建模误差的影响,从而在稳定性分析中取消了要求逼近误差平方可积或逼近误差的上确界已知的条件,理论分析证明了闭环控制系统是全局稳定的,跟踪误差收敛到零,仿真结果表明了该方法的有效性。  相似文献   

6.
基于神经网络的非线性自适应控制*   总被引:12,自引:0,他引:12  
本文对非线性自适应控制的一个新领域-基于神经网络的非线性自适应控制(以下简称NNBNAC)的研究进展进行了综述,讨论了这一领域中存在的几个重要问题,然后指出了与这些问题相关的未来的研究方向。  相似文献   

7.
本文针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统 ,提出了一种基于神经网络的稳定自适应输出跟踪控制方法 .用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统稳定 ,并使输出跟踪误差随时间趋于无穷而收敛到零 .仿真算例证明了该算法的有效性  相似文献   

8.
本文针对一类非线性系统,给出了非线性不同情况下此类非线性连续时间自适应控制方案及神经网络控制方案,由于在这种方案中控制法律的选择都是基于Lyapunov稳定性理论,都能够解决这类非线性系统的跟踪问题,并使整个环控制系统具有渐近稳定和参数渐近收敛特性,克服了许多神经网络控制系统中存在的稳定性问题,文中最后对两各发进行讨论及仿真。  相似文献   

9.
陈浩广  王银河 《计算机应用》2017,37(6):1670-1673
针对单输入单输出非线性系统的不确定性问题,提出了一种新型的基于扩展反向传播(BP)神经网络的自适应控制方法。首先,采用离线数据来训练BP神经网络的权值向量;然后,通过在线调节伸缩因子和逼近精度估计值的更新律,从而来达到控制整个系统的目的。在控制器的设计过程中,利用李亚普诺夫稳定性分析原理,保证了闭环系统的所有状态一致终极有界(UUB)。相比传统的BP神经网络自适应控制,所提方法能有效地减少在线调节的参数数目、减轻计算负担。仿真结果表明,该方法能够使闭环系统的所有状态都趋于零,即系统达到稳定状态。  相似文献   

10.
提出一种非线性系统的自适应神经跟踪控制方案。通过利用RBF神经网络对未知非线性系统建模,并用一个滑模控制项消除网络建模误差和外部干扰的影响,从而能够保证闭环系统的全局稳定性和输出跟踪误差渐近收敛于零。  相似文献   

11.
非线性系统的神经网络鲁棒自适应跟踪控制   总被引:1,自引:0,他引:1  
针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统,提出了一种神经网络鲁棒自适应输出跟踪控制方法.用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统内的所有信号均为有界.选择的神经网络权值调整规律可以防止自适应控制中的参数漂移.  相似文献   

12.
一类非线性参数系统的鲁棒自适应控制   总被引:2,自引:0,他引:2       下载免费PDF全文
针对一类具有非线性参数和未知非线性的非线性系统, 提出了一种鲁棒自适应控制设计方法, 该方法能保证所有信号全局一致有界, 并且使所研究的非线性系统的范围大大扩大.  相似文献   

13.
基于S类函数的严格反馈非线性周期系统的自适应控制   总被引:2,自引:1,他引:2  
朱胜  孙明轩  何熊熊 《自动化学报》2010,36(8):1137-1143
针对一类严格反馈非线性周期系统, 在周期非线性可时变参数化的条件下设计自适应控制器. 通过将周期时变参数展开成傅里叶级数, 并采用微分自适应律估计未知系数, 进行控制器反推设计. 引入S类函数, 并在控制器设计中应用S类函数处理截断误差项对系统跟踪性能的影响, 同时, S类函数能确保虚拟控制的可微. 给出几种不同的S类函数设计, 分析比较将其应用于控制器设计时产生的不同效果. 理论分析与仿真结果表明, 提出的控制方法能够实现系统输出跟踪期望轨迹, 且闭环系统所有信号有界.  相似文献   

14.
反步设计法是针时不确定非线性系统的进行鲁棒自适应控制器设计的主要方法之一,它主要是靠递推来完成,方法简单,但存在过参数化问题.在反步设计法的基础上,通过引入调节函数,选取合适的虚拟控制律,设计一种鲁棒自适应控制器.然后,利用Lyapunov稳定性理论证明了该设计不仅能够克服过参数化的问题,而且能够保证所设计的系统具有鲁棒自适应稳定性.仿真实例证明了该方法的有效性.  相似文献   

15.
In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback systems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closedloop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach.   相似文献   

16.
一类非线性系统的自适应模糊控制   总被引:6,自引:0,他引:6  
李少远  陈增强 《控制与决策》1999,14(2):173-176,180
针对一类非线性系统,利用模糊推理系统对非线性函数的逼近能力,导出基于Lyapunov稳定性理论的自适应控制器,不但能解决这类非线性系统的跟踪问题,而且可保证闭环系统的稳定性。仿真结果表明这一算法的有效性。  相似文献   

17.
随机非线性系统基于事件触发机制的自适应神经网络控制   总被引:1,自引:0,他引:1  
针对一类具有严格反馈结构且控制方向未知的随机非线性系统,提出了基于事件触发机制的自适应神经网络(Adaptive neural network,ANN)输出反馈控制方法.利用径向基神经网络逼近系统中未知的非线性函数.通过引入Nussbaum增益函数并设计滤波器,解决了系统控制方向未知的问题.通过设计具有相对阈值的事件触发机制,保证了闭环随机非线性系统的有界性.最后给出数值仿真例子验证所提控制方法的有效性.  相似文献   

18.
王正志 《自动化学报》1993,19(6):678-683
本文提出一种用自组织自学习适应思想解决非线性动力系统控制问题的新方法。在每个小区域感受野,可以把非线性系统近似展开为线性,由神经元执行控制。各神经元的凝视点,感受野和功能由自组织自学习自适应方法进行调节。大量仿真结果验证了本方法的正确性和实用性。  相似文献   

19.
针对具有严格反馈形式的随机非线性系统, 首次引入神经网络控制技术, 设计了适当形式的随机控制 Lyapunov函数, 并运用反推(Backstepping)技术和非线性观测器设计技术, 构造出一类自适应神经网络输出反馈控制器. 在一定条件下, 证明了闭环系统平衡点依概率稳定. 仿真算例验证了所给控制方案的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号