共查询到16条相似文献,搜索用时 46 毫秒
1.
介绍了铁谱分析技术对设备状态监测与故障诊断的方法;通过机械润滑油或液压油中微观磨损颗粒的分析来判断机器当前的工作状态。铁谱的计算机图像分析技术是近年来研究的热点。基于BP神经网络对磨损磨粒进行识别,提出了磨粒的分步识别策略,并以磨粒样本都对网络进行训练,取得了较好的识别效果。 相似文献
2.
提高铁谱磨粒识别能力是加强铁谱分析技术的重要手段,神经网络技术的不断普及为铁谱磨粒识别能力的提高带来了新的思路。对神经网络系统的基本原理和BP学习算法进行了叙述,并探讨了基于BP算法的磨粒特征识别系统的设计。 相似文献
3.
智能型磨粒识别是铁谱技术发展的主要趋势,人工神经网络技术的出现,为这种智能化提供了一条崭新的途径。介绍了神经网络专家系统的基本原理,叙述了BP学习算法,以及基于该算法的磨粒识别神经网络专家系统的设计。 相似文献
4.
5.
本文提出用改进的神经网络算法,建立适于磨粒分析的AWPRM模型,设计了智能磨粒识别分类器,实例表明,用该方法可以准确识别磨粒类型,并具有较好的推广能力。 相似文献
6.
磨损磨屑识别的BP算法及改进型研究 总被引:1,自引:0,他引:1
磨粒识别是铁谱技术的主要内容,本文对BP网络的基本算法及改进型进行了分析和研究,对它们应用于磨粒识别时的学习效率,精度等性能分别作了比较 相似文献
7.
8.
9.
通过提取磨粒形状特征参数、颜色特征参数和表面纹理等特征参数对磨粒形态进行量化表征,并以此为输入矢量,引入遗传算法(GA)改进BP神经网络对磨粒进行自动分类识别,建立遗传算法改进的BP神经网络模型,并给出具体的算法实现过程。分别应用遗传算法改进的BP神经网络模型和未引入遗传算法改进的BP神经网络模型对磨粒图像进行智能识别。实验结果表明,遗传算法改进的BP神经网络综合了遗传算法的全局优化和BP算法局部搜索速度快的特点,网络识别率较高,具有较好的全局性。 相似文献
10.
磨损磨粒特征参数提取及应用 总被引:5,自引:1,他引:5
本文在单个磨粒特征参数获取的基础上,详细介绍了铁谱谱片磨粒特征参数的提取方法,研究了磨损过程中摩擦系数与磨粒特征参数的相互关系,建立了磨粒特征参数的时序模型并对磨损过程进行了预测。 相似文献
11.
神经网络在磨损颗粒自动识别中的应用 总被引:3,自引:0,他引:3
引入了一套磨粒形态学描述体系,用来提取磨损颗粒的显微形态特征,然后以此为输入参数,提出了一套BP神经网络,对磨损颗粒进行自动识别分类。以很少的磨粒特征量,可以正确识别磨损类别,提高了磨损识别的效率。 相似文献
12.
13.
数字识别是模式识别领域中重要研究方向之一,具有广阔的应用前景。文章在对BP神经网络基本原理研究的基础上,提出了利用BP神经网络方法来实现手写数字识别的方案。通过MATLAB仿真实验表明,基于BP神经网络的数字识别系统取得了良好效果。 相似文献
14.
15.
为实现截齿截割过程中磨损程度的实时精准在线监测,提出了一种基于BP神经网络的截齿磨损程度多特征信号融合的检测方法。通过提取截割过程中不同磨损程度截齿的三向振动信号、红外温度信号和电流信号,建立了不同磨损程度截齿的多特征信号样本数据库,采用多特征信号样本对BP神经网络进行学习和训练,建立截齿磨损程度的识别模型,实现截齿磨损程度在线监测与精确识别。实验结果表明:基于BP神经网络的截齿磨损程度监测系统,网络判别结果和测试样本的实际磨损程度类别相符,该BP神经网络系统能够对截齿磨损程度类型进行准确的监测和识别。 相似文献
16.
阐述了神经网络模式识别的基本原理,采用改进的BP算法对故障模式识别进行了研究.改进算法采用的变换函数并引入动量因子,利用变步长算法加速学习,结合汽轮机减速箱故障模式识别进行仿真实验,建立了详细的诊断模型.仿真结果表明,改进算法能够快速收敛,识别结果稳定. 相似文献