首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cell therapy applications in tissue engineering, such as the ex vivo production of hematopoietic cells for transplantation, have recently entered the clinic. Although considerable effort has been focused on the development of biological processes to generate therapeutic cells, little has been published on the design and manufacture of devices for implementation of these processes in a robust and reproducible fashion at a clinical scale. In this study, the effect of tissue culture surface chemistry and texture was assessed in human bone marrow (BM) mononuclear cell (MNC) and CD34-enriched cell cultures. Growth and differentiation was assessed by total, progenitor (CFU-GM), stromal (CFU-F), and primitive (LTC-IC) cell output. Tissue culture treated (TCT) plastic significantly increased MNC culture output as compared with non-TCT plastic, whereas CD34-enriched cell cultures gave lower output (than MNC cultures) that was unaffected by TCT plastic. Interestingly, the level of MNC culture output was significantly different on four commercial TCT surfaces, with the best performing surface giving output that was 1.6- to 2.8-fold greater than the worst one. The surface giving the highest output was the best at supporting development of a distinct morphological feature in the adherent layer (i.e. cobblestone area) indicative of primitive cells, and X-ray photoelectron spectroscopy (XPS) was used to characterize this surface. For custom injection molding of culture devices, the use of three different resins resulted in MNC culture output that was equivalent to commercial cultureware controls, whereas CD34-enriched cell cultures were highly sensitive to resins containing additives. When the texture of molded parts was roughened by sandblasting of the tool, MNC culture output was significantly reduced and higher spikes of IL-6 and G-CSF production were observed, presumably due to macrophage activation. In conclusion, the manufacture of BM MNC culture devices for clinical applications was optimized by consideration of plastic resin, surface treatment, and texture of the culture substratum. Although CD34-enriched cells were insensitive to surface treatment, they were considerably more sensitive to biocompatibility issues related to resin selection. The development of robust systems for BM MNC expansion will enable clinical trials designed to test the safety and efficacy of cells produced in this novel tissue engineering application.  相似文献   

2.
Pluripotent hematopoietic stem cells (PHSC) are rare cells capable of multilineage differentiation, long-term reconstituting activity and extensive self-renewal. Such cells are the logical targets for many forms of corrective gene therapy, but are poor targets for retroviral mediated gene transfer owing to their quiescence, as retroviral transduction requires that the target cells be cycling. To try and surmount this problem we have constructed a retroviral producer line that expresses the membrane-bound form of human stem cell factor (SCF) on its cell surface. These cells are capable, therefore, of delivering a growth signal concomitant with recombinant retroviral vector particles. In this report we describe the use of this cell line to transduce a highly quiescent population of cells isolated from adult human bone marrow using the 5-fluorouracil (FU) resistance technique of Berardi et al. Quiescent cells selected using this technique were transduced by cocultivation with retroviral producers expressing surface bound SCF or with the parent cell line that does not. Following coculture, the cells were plated in long-term bone marrow culture for a further 5 weeks, before plating the nonadherent cells in semisolid media. Colonies forming in the semisolid media over the next 14 days were analyzed by polymerase chain reaction for the presence of the retroviral vector genome. Over six experiments, the transduction frequency of the quiescent 5-FU resistant cells using the SCF-expressing producer line averaged about 20%, whereas those transduced using the parent producer line showed evidence of reduced levels or no transduction.  相似文献   

3.
The objectives of this study were to (a) extend previous bone-marrow cell kinetics models that have been published for ionizing photons to include neutron radiations, and (b) provide Relative Biological Effectiveness (RBE) values for time-specific cell killing (cytopenia) and compensatory cellular proliferation (repopulation in response to toxic injury) for neutron doses ranging from 0.01 to 4.5 Gy delivered uniformly over one minute, hour, day, week, and month. RBEs for cytopenia of a cell lineage were based on ratios of protocol-specific doses that determined the same cell population nadir, whereas the RBEs for repopulation of a lineage were based on the ratios of protocol-specific doses that corresponded to the same total number of cells killed over the radiation treatments, and which should be replaced for long-term survival of the animal. Time-dependent RBEs were computed for neutron exposures relative to the effect of 60Co gamma rays given as a prompt dose. By the use of these RBE factors, low or variable dose rates, dose fractionations given over long periods of time, and different protocols involving several radiation qualities can be converted realistically, and by standard convention, into an equivalent dose of a reference radiation comprised of x or gamma rays given either as a pulse or at any other reference dose rate for which risk information based on epidemiological or animal dose-response data are available. For stromal tissues irradiated by fission neutrons, time-dependent RBEs for cytopenia were computed to range from 4.24 to 0.70 and RBEs for repopulation varied from a high of 6.88 to a low of 2.24. For hematopoietic stem cells irradiated by fission neutrons, time-dependent RBEs for cytopenia were computed to range from 5.02 to 0.22 and RBEs for repopulation varied from a high of 5.02 to a low of 1.98. RBEs based on tissue-kerma-free-in-air would be about twofold lower for isotropic cloud or rotational exposure geometries because marrow dose from isotropic neutron fields suffer factor-of-two greater attenuation than the gamma doses from gamma photons. For certain doses and dose rates, the RBE values computed for compensatory cellular proliferation clearly demonstrate the behavior that is commonly referred to as an inverse dose-rate effect, i.e., protraction of exposure may-under certain conditions-increase the magnitude of the dose response. Furthermore, because of non-linear rates for repair and repopulation, the highest RBEs are not necessarily found for the lowest doses nor the lowest RBEs always found at the highest doses.  相似文献   

4.
Treatment of mouse bone marrow (BM) with rabbit anti-mouse brain serum (RAMBS) plus complement (C') depletes several cell types, including T cells and facilitating cells (FCs), that is, cells that facilitate engraftment of sorted allogeneic stem cells (SCs) in vivo. In the present study, treatment of BM with RAMBS+C' resulted in the depletion of approximately half of the late cobblestone area (CA)-forming stem cells as assayed on irradiated long-term bone marrow culture (LTBMC) stroma. In addition, LTBMC of RAMBS+C'-treated BM produced functionally impaired stroma with reduced ability to support CA formation by nontreated exogenous SCs. This stromal impairment was not due to depletion of TCRalphabeta T cells in the BM, because BM cultures from TCR alpha-chain knockout mice supported normal numbers of exogenous CAs. Because CD8+/TCR- cells are enriched for FCs, we tested the effect of adding these cells back to the treated BM prior to culture. The sorted FCs alone did not produce CAs, but did improve the ability of the impaired stroma to support late CA formation by sorted SCs. These studies provide a new model for dissecting the roles of different cellular components of BM in producing functional stroma that supports CA formation by SCs, and show that the number of CAs formed depends on the "quality" of the stroma as well as the number of SCs seeded. These findings further suggest that CD8+/TCR- BM cells may be important for the establishment of functional stroma.  相似文献   

5.
The effect of stem cell factor (SCF) on the establishment of hematopoietic activity in murine long-term bone marrow cultures (LTBMC) was investigated by addition of SCF to (a) normal LTBMC from the onset of culture and (b) pre-established irradiated bone marrow stroma inoculated with lineage negative (Lin-) primitive hematopoietic progenitor cells enriched on the basis of low rhodamine-123 uptake (Rh-dull). Hematopoietic activity was established more rapidly in LTBMC grown in the presence of SCF (70 ng/mL), and the typical decline in cellularity and progenitor cell content during the first weeks of culture was not observed. SCF also promoted the rapid expansion of progenitor cells derived from Lin-, Rh-dull primitive hematopoietic cells inoculated onto irradiated preestablished bone marrow stroma. The data demonstrate that exogenous SCF augments hematopoietic activity in LTBMC, and that the levels of endogenous SCF elaborated in LTBMC may be suboptimal for expansion of hematopoietic cells.  相似文献   

6.
An immortalized human endothelial cell line was obtained by transfecting umbilical vein endothelial cells in primary culture with plasmid pMK16 containing SV40 replicated origin defective gene. The essential functional properties demonstrated in these immortalized human endothelial cells also retaining the classical phenotypical characteristics of endothelial cells in primary culture are: (1) endothelin-1 secretion; (2) capacity to convert big endothelin-1 into endothelin-1; (3) the capacity to secrete IL1 beta and IL6 interleukins both spontaneously and after lipopolysaccharide (LPS) stimulation; (4) arginine transfer from the extracellular to the intracellular medium. Such stable cell line could facilitate studies of regulation of endothelin-1 production; (5) No-synthase activity; (6) binding and metabolisation of acetylated low-density lipoproteins.  相似文献   

7.
8.
Intravenous transplantation of an in vitro maintained murine myeloma cell line, 5T33, results in progressive growth in the bone marrow of C57Bl/KaLwRiJ mice. Concurrent with the growth of the tumor in vivo, the bone marrow stromal cells are inhibited, as assayed by their ability to form stromal cell foci and long-term monolayers in vitro. Inhibition of normal mouse marrow stromal cell growth also occurs when 5T33 cells are added to the marrow cells in vitro, and contact between the marrow and 5T33 cells is not necessary to achieve inhibition, indicating secretion of one or more diffusible inhibitory factors.  相似文献   

9.
1. The relative ability of the renal and femoral vascular beds to remove infused angiotensin II and noradrenaline was examined in anaesthetized greyhounds. 2. The degree of extraction of infused drug by each vascular bed was expressed as a percentage, calculated by comparing the pressor response to intra-arterial infusion with that obtained when the same dose was administered by the intravenous route. 3. When compared with the same dose given intravenously, the pressor responses after renal artery administration of angiotensin II were reduced by a mean of 77.8 +/- 4.1% (mean +/- SEM, n = 12), whereas those after femoral artery infusions at the same dose were reduced by a mean of only 27.2 +/- 4.9% (n = 12). 4. The pattern of extraction seen with noradrenaline infusions administered in a similar manner was the reverse of that with angiotensin II. There was a 28.9 +/- 6.8% (n = 7) reduction in pressor responses to renal artery infusions; in contrast, femoral artery infusions of the same dose exhibited a 99.0 +/- 1.0% (n = 7) reduction in the pressor responses. 5. Local arterial administration of the angiotensin II competitive antagonist, [Sar1,Ile8]angiotensin II, potentiated the systemic pressor responses to renal artery infusions of angiotensin II, but not those to femoral artery infusions. 6. It is suggested that the marked ability of the renal vascular bed to remove circulating angiotensin II may, in part, involve receptor-binding, although this seems not to be the case in the femoral vascular bed.  相似文献   

10.
Mast cells and basophils produce a wide range of cytokines, including large amounts of both IL-6 and granulocyte-macrophage CSF (GM-CSF). However, the route by which cytokines are secreted is poorly understood. In the current study, we used two inhibitors of vesicular transport, brefeldin A and monensin, to examine the routes of secretion of IL-6 and GM-CSF in the differentiated KU812 human cell line and cultured mouse bone marrow mast cells (mBMMC). Studies of cytokine production over 6 to 24 h demonstrated that IL-6 and GM-CSF release from both cell types were inhibited by brefeldin A (BFA) following activation with calcium ionophore, A23187. Monensin had similar inhibitory effects to that of BFA on the initial and ongoing IL-6 release from KU812 cells. In contrast, the amount of each cytokine remaining within the cells was significantly enhanced. Similar results were obtained following IgE-mediated activation of mBMMC. BFA significantly inhibited both the constitutive secretion of IL-6 and the immediate ionophore-induced increase in IL-6 release from KU812 cells at 20 min postactivation. However, treatment with these agents did not alter the release of histamine and beta-hexaminidase from either mBMMC or KU812 cells. These studies suggest that both the initial 20-min release of IL-6 and secretion of IL-6 and GM-CSF over up to 24 h by mBMMC and differentiated KU-812 cells occur predominately through a vesicular transport-dependent mechanism, and that little, if any, IL-6 and GM-CSF is released through degranulation.  相似文献   

11.
In the present study, we investigated the effects of stem cell factor (SCF) and/or thrombopoietin (TPO) on the cell production by cord blood CD34(+) cells using a serum-deprived liquid culture system. Although SCF alone supported a modest production of neutrophilic cells and a remarkable generation of mast cells, the addition of TPO to the culture containing SCF caused an apparent generation of neutrophilic cells, identified by immunocytochemical staining and flow cytometric analysis. The significant production of neutrophilic cells by SCF and TPO was persistently observed from 2 weeks to 2 to 3 months of culture. The interaction between SCF and TPO on the neutrophilic cell generation was greater than the combined effects of SCF with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF). The addition of neutralizing antibody against G-CSF or GM-CSF did not influence the SCF + TPO-dependent neutrophilic cell production. A single-cell culture study showed that not only CD34(+)CD38(+) c-kit+ cells but also CD34(+)CD38(-)c-kit+ cells were responsible for the neutrophilic cell generation. In clonal cell cultures, GM progenitors as well as erythroid progenitors and multipotential progenitors expanded in the cultures supplemented with SCF and TPO. The neutrophilic cells grown by SCF + TPO were at myeloblast to band cell stages, and scarcely matured to segmented neutrophils. In addition, the cells generated by SCF + TPO were stained with monoclonal antibodies against myeloperoxidase, elastase, lactoferrin, and CD11b, but they had negligible levels of alkaline phosphatase (ALP) and CD35. The replating of the CD34(-)c-kit-/low CD15(+) cells grown by SCF + TPO into a culture containing SCF + G-CSF permitted both the terminal maturation into segmented cells and the appearance of ALP and CD35. These results indicate the existence of a G-CSF/GM-CSF-independent system of neutrophilic cell production.  相似文献   

12.
One of the controversies surrounding the repopulating capacities of haemopoietic stem cells is whether or not the same or different populations are responsible for short-term and long-term repopulation after transplantation. To address this question, we analysed results obtained from an in vitro model for the clonal production of granulocyte-macrophage colony-forming cells (CFU-GM) by individual primitive multilineage precursors in adult human bone marrow. The primitive precursors adhere to plastic and produce CFU-GM in a 1-week long 'delta' type culture. The clones that form are classified as having short maturation pathways (clones containing predominantly day 7 CFU-GM) or long maturation pathways (clones containing predominantly day 21 CFU-GM). The results indicate that individual primitive (P delta) cells produce clones that reach full maturity after different periods of time so that cells corresponding to a range of maturational stages can become available simultaneously. Consequently, transplanted stem cells may be able to provide both rapid and long-term mature cell recovery whilst at the same time reconstituting the stem cell pool. These results suggest that it might be possible to use highly purified stem cell populations, devoid of committed progenitors, for clinical transplantation.  相似文献   

13.
Therapy with all-trans-retinoic acid (ATRA) can rapidly improve the coagulopathy of acute promyelocytic leukemia (APL). This study was designed to evaluate whether the APL cell line NB4 induces the procoagulant activity (PCA) of human endothelial cells (ECs) in vitro, and whether this property is modified after ATRA-induced NB4 maturation. EC monolayers were incubated for 4 hours at 37 degrees C with the conditioned media (CM) of NB4 treated with 1 mumol/L ATRA (ATRA-NB4-CM) or the vehicle (control-NB4-CM). EC lysates were tested for PCA. ATRA-NB4-CM induced significantly more PCA:tissue factor (TF) than control-NB4-CM (P < .01). To identify the cause of TF induction, interleukin (IL)-1 beta antigen levels were measured in CM samples. ATRA-NB4-CM contained significantly more IL-1 beta than control-NB4-CM. EC PCA was significantly inhibited by an anti-IL-1 beta antibody. The addition to the media of 10 mumol/L ATRA counteracted the EC TF expression induced by NB4-CM. These data indicate that ATRA increases the promyelocyte-induced EC TF, partly through increased IL-1 beta production. However, ATRA can protect the endothelium from the procoagulant stimulus of leukemic cells.  相似文献   

14.
15.
The tocotrienol-rich fraction (TRF) of palm oil consists of tocotrienols and some alpha-tocopherol (alpha-T). Tocotrienols are a form of vitamin E having an unsaturated side-chain, rather than the saturated side-chain of the more common tocopherols. Because palm oil has been shown not to promote chemically-induced mammary carcinogenesis, we tested effects of TRF and alpha-T on the proliferation, growth, and plating efficiency (PE) of the MDA-MB-435 estrogen-receptor-negative human breast cancer cells. TRF inhibited the proliferation of these cells with a concentration required to inhibit cell proliferation by 50% of 180 microgram/mL whereas alpha-T had no effect at concentrations up to 1000 microgram/mL as measured by incorporation of [3H]thymidine. The effects of TRF and alpha-T also were tested in longer-term growth experiments, using concentrations of 180 and 500 microgram/mL. We found that TRF inhibited the growth of these cells by 50%, whereas alpha-T did not. Their effect on the ability of these cells to form colonies also was studied, and it was found that TRF inhibited PE, whereas alpha T had no effect. These results suggest that the inhibition is due to the presence of tocotrienols in TRF rather than alpha T.  相似文献   

16.
The binding of xenoreactive natural antibodies to the Galalpha1-3Galbeta1-4GlcNAc (alpha-galactose) oligosaccharide epitope on pig cells activates the recipient's complement system in pig to primate xenotransplantation. Expression of human alpha-1, 2-fucosyltransferase in pigs has been proposed as a strategy for reducing the expression level of the alpha-galactose epitope, thereby rendering the pig organs more suitable for transplantation into humans. The aim of this study was to examine how the cell surface expression of alpha-galactose, H, and related fucosylated and sialylated structures on a pig liver endothelial cell line is affected by transfection of human alpha-1,2-fucosyltransferase cDNA. Nontransfected and mock-transfected cells expressed alpha-galactose, alpha-2,3-sialylated, and alpha-2,6-sialylated epitopes strongly, with low level expression of type 2 H and LewisX. By contrast, expression of the H epitope was increased 5-8-fold in transfected cells with a 40% reduction in the expression of alpha-galactose epitope and a 50% decrease in sialylation, as measured by binding of Maackia amurensis and Sambuccus nigra agglutinins. LewisX expression was reduced to background levels, while the LewisY neoepitope was induced in human alpha-1,2-fucosyltransferase-expressing pig cells. The activities of endogenous alpha-1,3-galactosyltransferase, alpha-1,3-fucosyltransferases, and alpha-2,3- and alpha-2, 6-sialyltransferases acting on lactosamine were unaffected. Our results show that a reduction in alpha-galactose epitope expression in porcine endothelial cells transfected with human alpha-1, 2-fucosyltransferase cDNA may be achieved but at the expense of considerable distortion of the overall cell surface glycosylation profile, including the appearance of carbohydrate epitopes that are absent from the parent cells.  相似文献   

17.
A population of hybrid cells derived from the fusion of a permanent human myeloma cell line, which secretes complete IgE, and a subline of mouse L cells, did not secrete IgE as evidenced by sensitive immunosorbent tests. Also, the hybrid cells were observed not to contain intracellular IgE (epsilon or lambda chains) in amounts to be detectable by fluorescent antibody techniques. The doubling times and cell cycle parameters of the hybrid cells were found to be similar to those of the slow-growing parental human myeloma cells, in addition, the growth of the hybrid cells was characterized by a higher degree of contact inhibition than the parent mouse cells.  相似文献   

18.
Activation of the alternative pathway of homologous complement (C) was observed in a human lung adenocarcinoma cell line, CADO 43, after the cells had become apoptotic following treatment in vitro with vincristine and predonisolone. Deposition of C3b and C3bi on the serum-treated apoptotic cells was revealed by flow cytometry with anti-C3b and -C3bi-specific antibodies and immunoblotting with anti-C3 antibody immunoprecipitates extracted from solubilized fractions of serum-treated apoptotic cells. Two molecular mechanisms were found to be responsible for this post-apoptotic C-activation. Firstly, all C regulators, decay accelerating factor (DAF), membrane cofactor protein (MCP) and C3b/C4b receptor (CR1), were diminished on the cell surface concomitantly with the apoptotic process. Secondly, unidentified molecules which potentially activate homologous C and accept C3b/C3bi fragments became expressed on the cell surface during the apoptotic process. These findings may explain the mechanism whereby tumor cells are efficiently eliminated through chemotherapy.  相似文献   

19.
Fractionated and low-dose-rate total-body irradiation (TBI) were compared with single-dose high-dose-rate TBI for induction of long-term hemopoietic chimerism in a murine syngeneic bone marrow transplantation model. At 5 months after TBI and bone marrow transplantation, the degree of stable blood chimerism was determined from the proportion of stem cell-derived donor (B6-Gpi-1a) and host (B6-Gpi-1b) blood erythrocytes. This end point was used to construct radiation dose-response curves for long-term donor marrow engraftment corresponding to ablation of primitive bone marrow stem cells of the host. Increasing dose fractionation and decreasing dose rate had the effect of restoring host hemopoiesis and required higher TBI doses for equal donor engraftment. Most of the dose recovery occurred within the first 6 h between fractions, consistent with the kinetics of sublethal damage repair. The late chimerism data were fitted to the linear-quadratic model using indirect and direct analysis for a fixed threshold response. Both analyses gave relatively low alpha/beta ratios (below 2 Gy), within the range normally seen in late-responding tissues. The dose-rate data gave a repair half-time of 2 h as estimated by the incomplete-repair model. These estimates contrast with the much higher alpha/beta values and lower repair half-times derived from acute hemopoietic failure as indicated by LD50/30, with the implication that separate target cell populations with differing radiosensitivities are involved in these two bone marrow end points.  相似文献   

20.
OBJECTIVES: Tumors are thought to metastasize by a process involving tumor cell attachment to extracellular matrix, degradation of matrix components by tumor-associated proteases, and cellular movement into the area modified by protease activity. Type IV collagen comprises the major element tumor cells must degrade to gain access to the rest of the body. Renal cancer cell line progelatinase A (E.C. 3.4.24.24; 72-kDa type IV collagenase; MMP-2) mRNA expression was correlated with patient survival. METHODS: Total cellular mRNA was extracted from tumor cell lines derived from patients with metastatic renal cell carcinoma. The results of the densitometric analysis of Northern blots were correlated with patient survival. Formalin-fixed, paraffin-embedded tissue sections of primary renal cancers were examined for immunohistochemical expression of MMP-2. RESULTS: Cell lines established from 23 primary renal tumors and six metastatic sites in 26 patients with metastatic renal carcinoma were studied. Variable expression of progelatinase A, relative to A2058 melanoma cells (mean +/- SEM, 0.60 +/- 0.21; median, 0.082; range, 0 to 4.78), was found. There was a significant inverse association between patient survival and the log of the MMP-2 expression (P = 0.045 by the Cox proportional-hazards model). Using a cutoff value of 0.10, the closest round number to the median expression of MMP-2, a significant difference between survival of patients with lower and higher MMP-2 expression in their primary renal cell line was found (P = 0.0054). Cell lines with low, intermediate, and high expression of MMP-2 mRNA all had primary tumors with high tissue immunohistochemical expression of MMP-2. CONCLUSIONS: These studies demonstrate an inverse relationship between renal cancer cell line MMP-2 mRNA expression and patient survival. Immunohistochemical studies of the primary tumors from which the cell lines were derived uniformly showed high MMP-2 expression. Previous work suggests local renal factors upregulate cellular expression of MMP-2 in the primary tumor, and are not active at extrarenal sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号