首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A plastic and biodegradable bone substitute consists of poly (l-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process was carried out using μCT and histological analysis 12 weeks after implantation. CBCT (Cone Beam Computed Tomography) superimposition was used to characterise the effect of the different treatments on bone formation. In this study, we also explored adiponectin’s (APN) influence on primary cultured human jaw bone marrow mesenchymal stem cells gene expressions involved in the osteogenesis. We found that composite scaffolds loaded with gAPN or bone morphogenetic protein 2 (BMP2) exhibited significantly increased bone formation and mineralisation following 12 weeks in the extraction sockets of beagle dogs, as well as enhanced expression of osteogenic markers. In vitro investigation revealed that APN also promoted osteoblast differentiation of primary cultured human jaw bone marrow mesenchymal stem cells (h-JBMMSCs), accompanied by increased activity of alkaline phosphatase, greater mineralisation, and production of the osteoblast-differentiated genes osteocalcin, bone sialoprotein and collagen type I, which was reversed by APPL1 siRNA. Therefore, the composite scaffold loaded with APN exhibited superior activity for guided bone regeneration compared with blank control or Bio-Oss® (a commercially available product). The composite scaffold with APN has significant potential for clinical applications in bone tissue engineering.  相似文献   

2.
New skin substitutes for burn medicine or reconstructive surgery pose an important issue in plastic surgery. Matriderm® is a clinically approved three-dimensional bovine collagen-elastin matrix which is already used as a dermal substitute of full thickness burn wounds. The drawback of an avital matrix is the limited integration in full thickness skin defects, depending on the defect size. To further optimize this process, Matriderm® has also been studied as a matrix for tissue engineering of skin albeit long-term cultivation of the matrix with cells has been difficult. Cells have generally been seeded onto the matrix with high cell loss and minimal time-consuming migration. Here we developed a cell seeded skin equivalent after microtransfer of cells directly into the matrix. First, cells were cultured, and microinjected into Matriderm®. Then, cell viability in the matrix was determined by histology in vitro. As a next step, the skin substitute was applied in vivo into a full thickness rodent wound model. The wound coverage and healing was observed over a period of two weeks followed by histological examination assessing cell viability, proliferation and integration into the host. Viable and proliferating cells could be found throughout the entire matrix. The presented skin substitute resembles healthy skin in morphology and integrity. Based on this study, future investigations are planned to examine behaviour of epidermal stem cells injected into a collagen-elastin matrix under the aspects of establishment of stem cell niches and differentiation.  相似文献   

3.
Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants® (CMI®). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young’s modulus when compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.  相似文献   

4.
A variety of silver-coated dressings and some impregnated with other chemicals are now available in the market; however, there have been few studies analyzing their comparative efficacies as antimicrobial agents. Moreover, their properties for retaining an appropriate level of moisture that is critical for effective wound healing have never been reported. Five commercially available silver-containing and chlorhexidine dressings, Urgotul SSD®, Bactigras®, Acticoat®, Askina Calgitrol Ag® and Aquacel Ag®, were tested to determine their comparative antimicrobial effectiveness in vitro against five common wound pathogens, namely methicillin-sensitive and -resistant Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. Mepitel®, a flexible polyamide net coated with soft silicone, was used as a control. The zones of inhibition and both the rapidity and the extent of killing of these pathogens were evaluated. All five antimicrobial dressings investigated exerted some bactericidal activity, particularly against E. coli. The spectrum and rapidity of action ranged widely for the different dressings. Acticoat® had a broad spectrum of action against both Gram-positive and -negative bacteria. Other dressings demonstrated a narrower range of bactericidal activities. Regarding the absorption and release of moisture, Askina Calgitrol Ag® absorbed and released the most moisture from the environment. Aquacel Ag® also exhibited good moisture absorption and moisture release, but to a lower degree. The other tested dressings absorbed or released very little moisture. Askina Calgitrol Ag® and Aquacel Ag® are good alternative dressings for treating wounds with high exudates and pus. An understanding of the characteristics of these dressings will be useful for utilizing them for specific requirements under specified conditions.  相似文献   

5.
Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype) were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes.  相似文献   

6.
Bioactive and biocompatible porous scaffold materials with adjustable pore structures and drug delivery capability are one of the key elements in bone tissue engineering. In this work, bioactive and biocompatible sodium alginate (SA)/hydroxyapatite (HAP) macroporous scaffolds are facilely and effectively fabricated based on 3D printing of the pre‐crosslinked SA/HAP hydrogels followed by further crosslinking to improve the mechanical properties of scaffolds. The pore structures and porosity (>80%) of the porous scaffolds can be readily tailored by varying the formation conditions. Furthermore, the in vitro biomineralization tests show that the bioactivity of the porous scaffolds is effectively enhanced by the addition of HAP nanoparticles into the scaffold matrix. Furthermore, the anti‐inflammatory drug curcumin is loaded into the porous scaffolds and the in vitro release study shows the sustainable drug release function of the porous scaffolds. Moreover, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the porous scaffolds, and the results of the in vitro biocompatibility experiment show that the mBMSCs can be adhered well on the porous scaffolds. All of the results suggest that the bioactive and biocompatible SA/HAP porous scaffolds have great application potential in bone tissue engineering.  相似文献   

7.
Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.  相似文献   

8.
A fibrous scaffold is required to provide three‐dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. In this study, porous scaffolds with different mass ratio of poly(lactic acid) to poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) for tissue engineering were prepared by a modified particle leaching method. The effect of the addition of P(3HB‐co‐4HB) on microstructural morphology, compression property, swelling behavior, and enzymatic degradation of hybrid scaffolds was systematically investigated. The results indicated that this method was simple but efficient to prepare highly interconnected biomimetic 3D hybrid scaffolds (PP50/50 and PP33/67) with fibrous pore walls. The cytocompatibility of hybrid scaffolds was evaluated by in vitro culture of mesenchymal stem cells. The cell‐cultured hybrid scaffolds presented a complete 3D porous structure, thus allowing cell proliferation on the surface and infiltration into the inner part of scaffolds. The obtained hybrid scaffolds with pore size ranging from 200 to 450 µm, over 90% porosity, adjustable biodegradability, and water‐uptake capability will be promising for cartilage tissue engineering applications. POLYM. ENG. SCI., 54:2902–2910, 2014. © 2014 Society of Plastics Engineers  相似文献   

9.
In this work, novel docetaxel (DTX) -loaded Tween 80-free Pluronic P123 (P123) micelles with improved therapeutic effect were developed. The freeze-dried DTX-loaded P123 micelles (DTX-micelles) were analyzed by HPLC, TEM and DLS to determine the DTX loading, micelle morphology, size, respectively. The in vitro cytotoxic activity of DTX-micelles in HepG2, A549 and malignant melanoma B16 cells were evaluated by MTT assay. The corresponding in vivo antitumor efficacy was assessed in Kunming mice bearing B16 tumor after intravenous administration. The DTX-loading and efficiency into the micelles were 2.12 ± 0.09% and 86.34 ± 3.32%, respectively. The DTX-micelles were spherical with a mean particle size of 50.7 nm and size distribution from 22 to 84 nm, which suggested that they should be able to selectively accumulate in solid tumors by means of EPR effect, with a zeta potential of −12.45 ± 3.24 mV. The in vitro release behavior of DTX from DTX-micelles followed the Weibull equation. Compared with Duopafei®, DTX-micelles showed higher cytotoxicity against HepG2 (P < 0.01), A549 (P < 0.05) and B16 (P < 0.01) cells. In addition, DTX-micelles exhibited remarkable antitumor activity and reduced toxicity on B16 tumor in vivo. The tumor inhibition rates (TIR) of DTX-micelles was 91.6% versus 76.3% of Duopafei® (P < 0.01). These results suggested that P123 micelles might be considered as an effective DTX delivery system.  相似文献   

10.
The Bactigras® paraffin tulle coated with chlorhexidine is normally used for the treatment of donor-site wounds in burn patients who received split-thickness skin grafts in several centers. It has some disadvantages, such as adhesion to wound surfaces and pain from the irritation caused by this dressing. The Telfa AMD®, a non-adherent wound dressing which consists of absorbent cotton fibers impregnated with polyhexamethylene biguanide enclosed in a sleeve of thermoplastic polymers, is a new option for donor-site wound care which causes less adherence to the wound. The purpose of this study was to compare clinical efficacy of these two dressings for the management of donor-site wounds. Thirty-two patients who received split-thickness skin grafts by donor site harvesting from the thigh were enrolled in this study and randomized into two groups receiving either the Bactigras® or the Telfa AMD® wound treatment. Re-epithelialization, pain, infection and cost-effectiveness analyses were compared between both groups. The results showed that there was no significant difference in age, area of donor sites or length of hospital stays between the groups (p > 0.05). However, the day of re-epithelialization (≥90%) was significantly shorter in patients treated with the Telfa AMD® compared to the Bactigras® group (14.00 ± 3.05 vs. 9.25 ± 1.88 days for Bactigras® and Telfa AMD® groups, respectively, p < 0.001). The average pain score was also significantly lower in the Telfa AMD® group (1.57 ± 0.55 vs. 4.70 ± 1.16, p < 0.001). There was no difference in the cost of treatment between the groups (4.64 ± 1.97 vs. 5.72 ± 2.54 USD, p = 0.19). This study indicated that the Telfa AMD® was an effective dressing for the treatment of donor-site wounds.  相似文献   

11.
Wax esters are long-chain esters that have been widely applied in premium lubricants, parting agents, antifoaming agents and cosmetics. In this study, the biocatalytic preparation of a specific wax ester, cetyl octanoate, is performed in n-hexane using two commercial immobilized lipases, i.e., Lipozyme® RMIM (Rhizomucor miehei) and Novozym® 435 (Candida antarctica). Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) are employed to evaluate the effects of reaction time (1–5 h), reaction temperature (45–65 °C), substrate molar ratio (1–3:1), and enzyme amount (10%–50%) on the yield of cetyl octanoate. Using RSM to optimize the reaction, the maximum yields reached 94% and 98% using Lipozyme® RMIM and Novozym® 435, respectively. The optimum conditions for synthesis of cetyl octanoate by both lipases are established and compared. Novozym® 435 proves to be a more efficient biocatalyst than Lipozyme® RMIM.  相似文献   

12.
Based on oxidized regenerated cellulose (ORC), several hemostyptic materials, such as Tabotamp®, Equicel® and Equitamp®, have been developed to approach challenging hemostasis in neurosurgery. The present study compares ORC that differ in terms of compositions and properties, regarding their structure, solubility, pH values and effects on neuronal tissue. Cytotoxicity was detected via DNA-binding fluorescence dye in Schwann cells, astrocytes, and neuronal cells. Additionally, organotypic hippocampal slice cultures (OHSC) were analyzed, using propidium iodide, hematoxylin-eosin, and isolectin B4 staining to investigate the cellular damage, cytoarchitecture, and microglia activation. Whereas Equicel® led to a neutral pH, Tabotamp® (pH 2.8) and Equitamp® (pH 4.8) caused a significant reduction of pH (p < 0.001). Equicel® and Tabotamp® increased cytotoxicity significantly in several cell lines (p < 0.01). On OHSC, Tabotamp® and Equicel® led to a stronger and deeper damage to the neuronal tissue than Equitamp® or gauze (p < 0.01). Equicel® increased strongly the number of microglia cells after 24 h (p < 0.001). Microglia cells were not detectable after Tabotamp® treatment, presumably due to an artifact caused by strong pH reduction. In summary, our data imply the use of Equicel®, Tabotamp® or Equitamp® for specific applications in distinct clinical settings depending on their localization or tissue properties.  相似文献   

13.
Bone tissue engineering offers high hopes in reconstructing bone defects that result from trauma, infection, tumors, and other conditions. However, there remains a need for novel scaffold materials that can effectively stimulate ossification with appropriate functional properties. Therefore, a novel injectable, biodegradable, and biocompatible scaffold made by incorporating modified poly(caprolactone trifumarate) (PCLTF) with embedded gelatin microparticles (GMPs) as porogen is developed. Specifically, in vitro and in vivo tests were carried out. For the latter, to determine the osteogenic ability of PCLTF‐GMPs scaffolds, and to characterize bone‐formation, these scaffolds were implanted into critical‐sized defects of New Zealand white rabbit craniums. Field Emission Scanning Electron Microscope (FESEM) demonstrated cells of varying shapes attached to the scaffold surface in vitro. The PCLTF‐GMPs demonstrated improved biocompatibility in vivo. Polyfluorochrome tracers detected bone growth occurring in the PCLTF‐GMPs filled defects. By incorporating PCLTF with GMPs, we have fabricated a promising self‐crosslinkable biocompatible and osteoconducive scaffold for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43711.  相似文献   

14.
Traumas and chronic damages can hamper the regenerative power of nervous, muscle, and connective tissues. Tissue engineering approaches are promising therapeutic tools, aiming to develop reliable, reproducible, and economically affordable synthetic scaffolds which could provide sufficient biomimetic cues to promote the desired cell behaviour without triggering graft rejection and transplant failure. Here, we used 3D-printing to develop 3D-printed scaffolds based on either PLA or graphene@PLA with a defined pattern. Multiple regeneration strategies require a specific orientation of implanted and recruited cells to perform their function correctly. We tested our scaffolds with induced pluripotent stem cells (iPSC), neuronal-like cells, immortalised fibroblasts and myoblasts. Our results demonstrated that the specific “lines and ridges” 100 µm-scaffold topography is sufficient to promote myoblast and fibroblast cell alignment and orient neurites along with the scaffolds line pattern. Conversely, graphene is critical to promote cells differentiation, as seen by the iPSC commitment to neuroectoderm, and myoblast fusions into multinuclear myotubes achieved by the 100 µm scaffolds containing graphene. This work shows the development of a reliable and economical 3D-printed scaffold with the potential of being used in multiple tissue engineering applications and elucidates how scaffold micro-topography and graphene properties synergistically control cell differentiation.  相似文献   

15.
Wharton’s jelly (WJ) is a gelatinous tissue within the umbilical cord that contains myofibroblast-like stromal cells. A unique cell population of WJ that has been suggested as displaying the stemness phenotype is the mesenchymal stromal cells (MSCs). Because MSCs’ stemness and immune properties appear to be more robustly expressed and functional which are more comparable with fetal than adult-derived MSCs, MSCs harvested from the “young” WJ are considered much more proliferative, immunosuppressive, and even therapeutically active stem cells than those isolated from older, adult tissue sources such as the bone marrow or adipose. The present review discusses the phenotypic characteristics, therapeutic applications, and optimization of experimental protocols for WJ-derived stem cells. MSCs derived from WJ display promising transplantable features, including ease of sourcing, in vitro expandability, differentiation abilities, immune-evasion and immune-regulation capacities. Accumulating evidence demonstrates that WJ-derived stem cells possess many potential advantages as transplantable cells for treatment of various diseases (e.g., cancer, chronic liver disease, cardiovascular diseases, nerve, cartilage and tendon injury). Additional studies are warranted to translate the use of WJ-derived stem cells for clinical applications.  相似文献   

16.
17.
Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as surface charge due to the acrylic chains. Additionally, these results suggested that the porous PAAm-g-CHT scaffold may act as a potential neural cell carrier.  相似文献   

18.
Bone tissue engineering using in situ forming 3D scaffolds can be an alternative to surgically treated scaffolds. This work aimed to develop in situ forming scaffolds using poly (lactic-co-glycolic acid) and a bone synthesizing drug (risedronate) with or without the porogenic agent (collagen). Hybrid scaffolds were formed through solvent-induced phase inversion technique and were morphologically evaluated using scanning electron microscopy (SEM). The effect of scaffolds on Saos-2 cell line viability using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test besides their effect on cell growth using fluorescence microscope was assessed. Furthermore, alkaline phosphatase (ALP) activity as well as Ca2+ deposition on the scaffolds was evaluated. SEM images revealed the porous structure for collagen-based scaffolds. Saos-2 cell proliferation was significantly enhanced with risedronate-loaded scaffolds compared to those lacking the drug. Porous collagen-based scaffolds were more favorable for both the cell growth and the promotion of ALP activity. Furthermore, collagen-based scaffolds promoted the Ca2+ deposition compared to their counterparts without collagen. Such results suggest that collagen-based scaffolds offer excellent biocompatibility for bone regeneration, where this biocompatible nature of scaffold leads to the proliferation of cells that lead to the deposition of mineral on the scaffold. Such in situ forming 3D scaffolds provide a promising noninvasive approach for bone tissue engineering.  相似文献   

19.
《Ceramics International》2021,47(21):29535-29549
The employment of graphene and its derivatives, graphene oxide and reduced graphene oxide, is extending from bioimaging and fabrications of biosensors to drug delivery and tissue engineering in the biomedical area. Graphene family-incorporated scaffolds, used in bone tissue engineering and bone regenerative medicine, profit superior properties of these materials, such as enhanced mechanical properties, large surface area, and the existence of functional groups. At the same time, problems related to cytotoxicity and adverse immune response of graphene family are solved when they are applied to produce 3-dimensional scaffolds. The objective of this review is to focus on in vitro properties of scaffolds consisting of graphene or its derivatives, especially osteogenic and antibacterial properties, as well as the influence of graphene and its derivatives on in vivo performances of implanted bone scaffolds. The positive effect of graphene and its two derivatives on attachment, and cell proliferation, as well as in vitro osteogenic differentiation of different cells was undeniable. Besides, the synergetic outcome of using graphene family on the antibacterial feature of scaffolds, especially incorporation with the silver element, was effective. Moreover, successful treatment of critical-sized bone defects was reported during in vivo preclinical tests when graphene or its derivatives-incorporated scaffolds were used. However, the limited number of in vivo studies should be considered as one of the main shortcomings to use graphene as a promising candidate for treating bone defects. It is anticipated that the increased number of well-designed preclinical studies could improve the applications of graphene incorporated scaffolds in bone tissue engineering/regeneration, and find out explanations and appropriate solutions to possible long-term toxicity and nonbiodegradability of these materials.  相似文献   

20.
Specific stem cell populations within dental mesenchymal tissues guarantee tooth homeostasis and regeneration throughout life. The decision between renewal and differentiation of stem cells is greatly influenced by interactions with stromal cells and extracellular matrix molecules that form the tissue specific stem cell niches. The Cxcl12 chemokine is a general marker of stromal cells and plays fundamental roles in the maintenance, mobilization and migration of stem cells. The aim of this study was to exploit Cxcl12-GFP transgenic mice to study the expression patterns of Cxcl12 in putative dental niches of intact and injured teeth. We showed that endothelial and stromal cells expressed Cxcl12 in the dental pulp tissue of both intact molars and incisors. Isolated non-endothelial Cxcl12+ dental pulp cells cultured in different conditions in vitro exhibited expression of both adipogenic and osteogenic markers, thus suggesting that these cells possess multipotent fates. Taken together, our results show that Cxcl12 is widely expressed in intact and injured teeth and highlight its importance as a key component of the various dental mesenchymal stem cell niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号