共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, bi‐axial self‐reinforcement of high‐density polyethylene (HDPE) was achieved through a uni‐axial shear stress field introduced by dynamic packing injection molding technology. Here, further improvement of tensile strength along the flow direction (MD) was achieved by blending a small amount of high‐molecular‐weight polyethylene (HMWPE) with HDPE, while the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional moldings. Tensile strengths in both flow and transverse directions were considerably enhanced, with improvements from 23 MPa to 76 MPa in MD and from 23 MPa to 31 MPa in TD. The effect of HMWPE content and molding parameters on tensile properties was also investigated. The tensile strength along MD was highly dependent on HMWPE content, oscillating cycle, mold temperature, melt temperature and packing pressure, while that along TD was insensitive to composition and processing parameters within the selected design space. According to the stress–strain curves, samples with HMWPE produced by dynamic packing injection molding had a special tensile failure mode in MD, different from both typical plastic and brittle failure modes. There were no yielding and necking phenomena, which are characteristic during tensile testing of plastic materials, but there was still a considerably higher elongation compared to those of brittle materials. However, in TD, all dynamic injection molding samples exhibited plastic failure as did typical conventional injection molding samples. Copyright © 2006 Society of Chemical Industry 相似文献
2.
This article reports the toughness improvement of high‐density polyethylene (HDPE) by low‐density polyethylene (LDPE) in oscillating packing injection molding, whereas tensile strength and modulus are greatly enhanced by oscillating packing at the same time. Compared with self‐reinforced pure HDPE, the tensile strength of HDPE/LDPE (80/20 wt %) keeps at the same level, and toughness increases. Multilayer structure on the fracture surface of self‐reinforced HDPE/LDPE specimens can be observed by scanning electron microscope. The central layer of the fracture surface breaks in a ductile manner, whereas the break of shear layer is somewhat brittle. The strength and modulus increase is due to the high orientation of macromolecules along the flow direction, refined crystallization, and shish‐kebab crystals. Differential scanning calorimetry and wide‐angle X‐ray diffraction find cocrystallization occurs between HDPE and LDPE. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 799–804, 1999 相似文献
3.
Optical properties of high‐density polyethylene in injection press molding for IR system lenses 下载免费PDF全文
Ryo Kaneda Toshihiro Takahashi Masayasu Takiguchi Motoharu Hijikata Hiroshi Ito 《Polymer Engineering and Science》2018,58(5):632-641
An experimental investigation of injection press molding (IPM) was conducted to assess high infrared radiation (IR) transmittance with an opaque state (low‐visibility ray (VR) transmittance) necessary for IR system lenses as a target high‐density polyethylene (HDPE) IR transmission material. The changed conditions were the cavity open distance and delay time considering the polymer melt flowability. Other molding conditions were held constant. Mold surface roughnesses of two kinds were used. Data for IR and VR transmittance were evaluated using measurements or observation results obtained for surface roughness, thickness, differential scanning calorimetry (DSC), crystallinity, and the internal structure. Results show that the surface roughness and thickness of molded parts did not influence IR or VR transmittance. For thin skin layers with low orientation of molecular chains, the IR transmittance was higher for longer delay times. For low molecular chain orientation in the shear–core layer, the VR transmittance was also low. The molecular chain orientation differed depending on IPM conditions. Setting a longer delay time produced a uniform distribution of the molded part thickness. Furthermore, thickness became a constant value when a mold with high surface roughness was used. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers 相似文献
4.
5.
Shui‐Po Liang Bin Yang Xiao‐Rong Fu Wei Yang Nan Sun Sheng Hu Ming‐Bo Yang 《应用聚合物科学杂志》2010,117(2):729-735
Gas‐assisted injection molding (GAIM) is an innovative plastic processing technology, which was developed from the conventional injection molding, and has currently found wide industrial applications. About 70% of the whole gas‐assisted injection molding cycle is actually occupied by the cooling stage. The quality and production efficiency of molded parts are considerably affected by the cooling stage. Hence, it is necessary to study the solidification behaviors during the cooling stage. In this work, a simple experimental method was designed to simulate the solidification behaviors of high‐density polyethylene during cooling stage of GAIM. The enthalpy transformation approach, coupled with the control‐volume/finite difference techniques, was adopted to deal with the transient heat transfer problems with phase change effects. In situ measurements of the temperature decreases in the cavity were also carried out. Reasonable agreements between the experimental values and the simulated results such as cooling time, cooling rates, and temperature curves were obtained, which proved that this simple experimental method was effective. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
6.
Youhong Tang Cheng Yang Ping Gao Lin Ye Chengbi Zhao Wei Lin 《Polymer Engineering and Science》2011,51(1):133-142
Maleic anhydride‐grafted polyethylene (MAPE) is investigated as a compatibilizer of polyethylene/organoclay nanocomposite. With MAPE help, partial exfoliation of the organoclay occurs in the nanocomposites with the melt compounding method for organoclay loading up to 8.0 wt%. Investigation of the rheological behaviors shows that at high frequencies or shear rates, the viscosity is essentially unaffected by the presence of organoclay; however, at low frequencies or shear rates, viscoelastic behavior alters dramatically, and this is attributed to the presence of anisotropic stacks of randomly oriented organoclay sheets and the formation of network structures. The important observations are firstly the initial stress overshooting observed in steady shear. At low shear rates, stress is much greater at the initial stage than the stress at the steady state; however, it can be eliminated by preshear at low shear rates, which means that preshearing can effectively break down the network structures and align the organoclay. Second, the normalized stress at the overshoot point is a function of the critical strain unit. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers 相似文献
7.
To better understand the formation of different crystal structures and improve the mechanical properties of high‐density polyethylene samples, melt vibration technology, which generally includes shear vibration and hydrostatic pressure vibration, was used to prepare injection samples. Through melt vibration, the crystal structure changed from typical spherulites of the traditional injection sample to obviously orientated lamellae of vibration samples. Sizes and orientation degrees of lamellae were different according to different vibration conditions. Crystallinity degrees of vibration samples increased notably. Therefore, the tensile strength of vibration samples increased with increasing vibration frequency and vibration pressure, whereas elongation of vibration samples decreased during the first stage and then continued to increase as the vibration frequency increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 818–823, 2005 相似文献
8.
A novel environmentally friendly process for decrosslinking of the peroxide crosslinked HDPE (XHDPE) via ultrasonic assisted single (SSE) is developed and its process characteristics are established. The specific ultrasonic energy decreases with the flow rate and increases with the ultrasonic amplitude, while die pressure increases with the flow rate and decreases with the ultrasonic amplitude. Application of ultrasonic treatment during extrusion enables an increase of productivity. Gel fraction, crosslink density, dynamic and mechanical properties, and thermal behavior of the virgin HDPE, XHDPE, and decrosslinked XHDPE are measured. Gel fraction and crosslink density of the decrosslinked XHDPE are decreased with increasing flow rate and ultrasonic amplitude. A unique linear relation between the normalized gel fraction and the normalized crosslink density is found, regardless of the type of extruders and processing conditions. SEM images reveals that the decrosslinked XHDPE is a composite of submicron size gel particles embedded in its sol matrix. The sol extracted from the decrosslinked XHDPE exhibits a higher complex viscosity and higher level of branching than the virgin HDPE. An increase of the ultrasonic amplitude leads to a decrease of the complex viscosity, storage and loss moduli, and an increase of the loss tangent of the decrosslinked XHDPE. The thermal behavior and mechanical properties of the decrosslinked XHDPE show a weak dependency on processing conditions. At some processing conditions, mechanical properties of the decrosslinked XHDPE are close or higher to those of XHDPE. POLYM. ENG. SCI., 54:2715–2730, 2014. © 2013 Society of Plastics Engineers 相似文献
9.
Galip Yilmaz Thomas Ellingham Lih‐Sheng Turng 《Polymer Engineering and Science》2019,59(Z2):E170-E179
Ultra‐high‐molecular weight polyethylene (UHMWPE) powder was processed using injection molding (IM) with different cavity thicknesses and injection‐compression molding (ICM). The processing parameters of feeding the powders were optimized to ensure proper dosage and avoid jeopardizing the UHMWPE molecular structure. Dynamic mechanical analysis (DMA) and Fourier‐transform infrared spectroscopy tests confirmed that the thermal and oxidative degradations of the material were avoided but crosslinking was induced during melt processing. Tensile tests and impact tests showed that the ICM samples were superior to those of IM. Increased cavity thickness and ICM were helpful for reducing the injection pressure and improving the mechanical properties due to effective packing of the material. Short shot molding showed that the UHMWPE melt did not exhibit the typical progressive and smooth melt front advancements. Due to its highly entangled polymer chains structure, it entered the cavity as an irregular porous‐like structure, as shown by short shots and micro‐computed tomography scans. A delamination skin layer (around 300‐μm thick and independent of cavity thickness) was formed on all IM sample surfaces while it was absent in the ICM samples, suggesting two different flow behaviors between IM and ICM during the packing phase. POLYM. ENG. SCI., 59:E170–E179, 2019. © 2018 Society of Plastics Engineers 相似文献
10.
Differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, and transmission electron microscope are employed to study the microstructure of biaxially self‐reinforced high‐density polyethylene (HDPE) prepared in uniaxial oscillating stress field by dynamic packing injection molding. The results indicate that the biaxial self‐reinforcement of HDPE is mainly due to the existence of interlocking shish‐kebab morphology (i.e., zip fastener structure), along with the orientation of lamellae and molecular chains and the enhanced crystallinity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1591–1596, 2004 相似文献
11.
High‐density polyethylene (HDPE) sample tanks manufactured by using a rotational molding process were used in a study to determine the presence and characteristics of antioxidants at the inside and outside surfaces of the tanks. The sample tanks were manufactured by using three different processing times to create undercooked, ideal, and overcooked tanks. Differential scanning calorimetry (DSC) was used to perform oxidation induction time (OIT) studies by using specimens cut from the surfaces of the tank. The OIT portion of the analysis exposes the melted HDPE specimens to an oxygen environment at 200°C for over 2 h. The DSC monitors change in the energy transfer rate to or from the specimen because of chemical reactions. A numerical integration process was used to analyze the DSC‐OIT data and to obtain additional information about the energy levels measured during the analysis. Fourier transform infrared (FTIR) studies were also performed to determine the chemical characteristics of specimens cut from the processed tanks. Results showed increased degradation at the inside surfaces of the overcooked tanks because of a lack of antioxidants. The results also showed that metal ions from the mold wall could react with the outside surfaces of the tanks and influence the level of antioxidants at that surface. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3052–3066, 2004 相似文献
12.
Two solution reactors in series were utilized to synthesize comb‐branched high‐density polyethylene (HDPE), cbHDPE, where the first reactor prepares vinyl‐terminated HDPE macromers catalyzed by an organometallic catalyst favoring beta hydride transfer and the second reactor copolymerizes HDPE macromers with ethylene using a different organometallic catalyst capable of incorporating macromers. A bimodal HDPE, biHDPE with bimodalities in molecular weight, and hexene content of the desired composition distribution was also prepared in a gas phase reactor using silica supported dual organometallic catalysts. By blending 3% solution‐made cbHDPE into the gas‐phase biHDPE, the resulting trimodal HDPE preserves the excellent stiffness and toughness of the bimodal HDPE while having exceptional melt strength and processability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45755. 相似文献
13.
Carbon black (CB) filled high‐density polyethylene (HDPE) composites are prepared by ordinary blending for use as an electrical conductive polymer composite. The composite changes from an electrical insulator to a conductor as the CB content is increased from 10 to 20 wt %, which is called the percolation region. For explanatory purposes, three models, namely, “conduction via nonohmic contacting chain,” “conduction via ohmic contacting chain,” and a mixture of them corresponding to the conductions in the percolation region, high CB loading region, and limiting high CB loading are proposed by the reasonable configurations of aggregate resistance, contact resistance, gap capacitance, and joining aggregates induction. The characters of the impedance spectra based on the three models are theoretically analyzed. In order to find some link between the electrical conductivity and the CB dispersion manner in the composites, the impedance spectra of three samples, HDPE/15 wt % CB (the center of the percolation region), HDPE/25 wt % CB (a typical point in the high CB loading region), and HDPE/19 wt % CB (the limiting high CB loading region), are measured by plotting the impedance modulus and phase angle against the frequency and by drawing the Cole–Cole circle of the imaginary part and real part of the impedance modulus of each sample. The modeled approached spectra and the spectra measured on the three samples are compared and the following results are found: the measured impedance spectrum of HDPE/15 wt % CB (percolation region) is quite close to the model of conduction via nonohmic contacting chain. The character of the measured spectrum of HDPE/25 wt % CB consists of the form of the model of conduction via ohmic contacting chain. The impedance behavior of HDPE/19 wt % CB exhibits a mixture of the two models. From the comparisons, it is concluded that the electrical conducting network in the percolation region of the CB filled HDPE composite is composed of aggregate resistance, nonohmic contact resistance, and gap capacitance, and that of the high CB loading region consists of continuously joined CB aggregate chains, which are possibly wound and assume helix‐like (not straight lines) conductive chains, acting as electrical inductions as the current passes through. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1344–1350, 2005 相似文献
14.
High‐density polyethylene/wood flour (HDPE/WF) composites were prepared by a twin‐screw extruder. The effects of WF, silane coupling agents, polymer compatibilizers, and their content on the comprehensive properties of the WF/HDPE composites have been studied in detail, including the mechanical, thermal, and rheological properties and microstructure. The results showed that both silane coupling agents and polymer compatibilizers could improve the interfacial adhesion between WF and HDPE, and further improve the properties of WF/HDPE composites, especially with AX8900 as a compatibilizer giving higher impact strength, and with HDPE‐g‐MAH as a compatibilizer giving the best tensile and flexural properties. The resultant composite has higher strength (tensile strength = 51.03 MPa) and better heat deflection temperature (63.1°C). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
15.
The electrical resistivity of high‐density polyethylene (HDPE) loaded with carbon black (CB) blends was evaluated as a function of the blending time and the melt index of HDPE. The relationship between the positive temperature coefficient effect and the room temperature volume resistivity was investigated. The positive temperature coefficient effect and reproducibility were improved significantly when the blending time of HDPE and CB was comparatively long. The effects of 60Co γ‐ray and electron beam irradiation on the positive and negative temperature coefficient behavior of the blends were studied. The effect of thermal aging on the volume resistivity was studied to ascertain the structural stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2440–2446, 2002 相似文献
16.
The non‐isothermal crystallization behavior of cork–polymer composites (CPC) based on polypropylene (PP) matrix was studied. Using differential scanning calorimetry (DSC), the crystallization behavior of CPC with 15 wt % cork powder at different cooling rates (5, 10, 15, and 20 °C/min) was studied. The effect of a coupling agent based on maleic anhydride was also analyzed. A composite (PPg) containing polypropylene grafted maleic anhydride (PPgMA) and PP was prepared for comparison purposes. Crystallization kinetic behavior was studied by Avrami, Ozawa, Liu, and Kissinger methods. The Ozawa method fails to describe the behavior of these composites. Results show that cork powder surface acts as a nucleating agent during non‐isothermal crystallization, while the addition of PPgMA decreases the crystallization rate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44124. 相似文献
17.
Wood‐plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. In this study, we examined the performance of wood flour/high‐density polyethylene composites after accelerated weathering. Two 24 factorial experimental designs were used to determine the effects of two hindered amine light stabilizers, an ultraviolet absorber, a colorant, and their interactions on the photostabilization of high‐density polyethyl‐ ene blends and wood flour/high‐density polyethylene composites. Color change and flexural properties were determined after 250, 500, 1000, and 2000 h of accelerated weathering. The results indicate that both the colorant and ultraviolet absorber were more effective photostabilizers for wood flour/high‐density polyethylene composites than the hindered amine light stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2609–2617, 2003 相似文献
18.
Paper mill sludge (PMS) is a waste material from pulping. In this article it was used to replace part of a wood fiber (WF) filler to reinforce high‐density polyethylene (HDPE). The properties of the PMS/WF/HDPE composites were investigated. When half of WF was replaced with PMS, the bending strength and modulus of WF/HDPE composites decreased by 16.08% and 29.91%, respectively, but their impact strength increased by 11.31%. Dynamic mechanical analysis demonstrated that with PMS addition, the storage modulus decreased and the loss tangent increased. Although the flexural properties of the PMS/WF/HDPE composites decreased compared to WF/HDPE composite, they still had satisfactorily high strengths. The 30:30:36 PMS/WF/HDPE composite presented bending and impact strengths of 61.00 MPa and 12.11 kJ m−2, respectively. The 50:20:26 PMS/WF/HDPE composite presented bending and impact strengths of 55.02 MPa and 10.37 kJ m−2, respectively. Rheological test proved that substituting part of WF with PMS would not affectmanufacture processing. This study indicated that paper mill sludge could be used in wood plastic composites, which would reduce pollution from paper manufacturing. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
19.
The quality of rotational molded products is strongly affected by the sintering behavior of the powders used in the process. In turn, for a given material, the sintering behavior of polymer powders is dependent on the size and the shape of particles obtained in the milling apparatus. The quality of powders for rotational molding is usually determined by means of size distribution, dry flow, and bulk density tests. However, these tests do not provide insight into the relationship between the shape of powders, the milling conditions, and the sintering behavior during the rotational molding cycle. Nevertheless, the application of mathematical tools to powder analysis can significantly improve the efficiency of the grinding process, looking not only at the size but also at the shape of the powder. This can in turn result in a higher reliability of rotational molding and in better performances of the products obtained in processes dominated by the sintering behavior of polymer powders. In this work the grinding process of recycled high‐density polyethylene was analyzed using a quantitative approach to the shape and size of the powders. In particular, shape factors, capable of characterizing powders obtained in different milling conditions, were studied. Finally, the influence of the powders' shape and size on sintering behavior was studied by thermomechanical analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 449–460, 2004 相似文献
20.
Uniaxial oscillating stress field by dynamic packing injection molding (DPIM) is well established as a means of producing uniaxially self‐reinforced polyethylene and polypropylene. Here, the effects on the mechanical properties of high‐density polyethylene (HDPE) in both flow direction (MD) and transverse direction (TD) of packing modules and processing parameters in DPIM are described. Both biaxially and uniaxially self‐reinforced HDPE samples are obtained by uniaxial shear injection molding. The most remarkable biaxially self‐reinforced HDPE specimens show a 42% increase of the tensile strength in both MD and TD. The difference of stress–strain behavior and impact strength between MD and TD for the DPIM moldings indicates the asymmetry of microstructure in the two directions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1584–1590, 2004 相似文献