首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemic investigation of the influence of the plain and functionalized carbon nanotube (CNT) contents on the ultradrawing properties of ultrahigh molecular weight polyethylene/carbon nanotubes (UHMWPE/CNTs, FCy) and UHMWPE/functionalized CNTs (FCfx‐y) as‐prepared fibers are reported. In a way similar to those found for the orientation factor values, the achievable draw ratios (Dra) of the FCy and FCfx‐y as‐prepared fibers approached a maximum value as their CNT and/or functionalized CNT contents reached their corresponding optimum values. The maximum Dra values obtained for FCfx‐0.001 as‐prepared fiber specimens prepared at varying maleic anhydride grafted polyethylene (PE‐g‐MAH)/modified CNTs weight ratios were significantly higher that of the FC0.0015 as‐prepared fiber specimen prepared at the optimum plain CNT content. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn FCy and FCfx‐y fibers can be obtained by ultradrawing the fibers prepared at their optimum plain CNT and/or functionalized CNT contents. To understand the interesting orientation, ultradrawing and tensile properties of FCy and FCfx‐y fiber specimens, FTIR, specific surface area, and SEM morphology analysis of the plain and functionalized CNTs were performed in this study. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

2.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Ultrahigh molecular weight polyethylene (UHMWPE)/nanosilica (F2Sy) and UHMWPE/modified nanosilica (F2Smxy) as‐prepared fibers were prepared by spinning of F2Sy and F2Smxy gel solutions, respectively. Modified nanosilica particles were prepared by grafting maleic anhydride grafted polyethylenes onto nanosilica particles. The achievable draw ratios (Dra) of F2Sy and F2Smxy as‐prepared fibers approached a maximal value as the original and modified nanosilica contents reached corresponding optimum values; the maximal Dra value obtained for F2Smxy as‐prepared fiber specimens was significantly higher than that of the F2Sy as‐prepared fiber specimens prepared at the optimum nanosilica content. The melting temperature and evaluated lamellar thickness values of F2Sy and F2Smxy as‐prepared fiber series specimens decrease, but crystallinity values increase significantly, as their original and modified nanosilica contents respectively increase. Similar to the achievable drawing properties of the as‐prepared fibers, the orientation factor, tensile strength (σf) and initial modulus (E) values of both drawn F2Sy and F2Smxy fiber series specimens with a fixed draw ratio reach a maximal value as the original and/or modified nanosilica contents approach the optimum values; the σf and E values of the drawn F2Smxy fiber specimens are significantly higher than those of the corresponding drawn F2Sy fiber specimens prepared at the same draw ratios and nanosilica contents but without being modified. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F2Sy and F2Smxy fiber specimens, Fourier transform infrared, specific surface area and transmission electron microscopy analyses of the original and modified nanosilica were performed in this study. © 2012 Society of Chemical Industry  相似文献   

4.
An investigation of the influence of the contents of original and modified attapulgite (ATP) on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE)/ATP (FAx) and UHMWPE/modified ATP (FAmx) as‐prepared fibers is reported. Similar to what is found for the orientation factor values, the achievable draw ratios (Dra) of the FAx and FAmx as‐prepared fibers approach a maximum value as the original ATP and/or modified ATP contents reach their corresponding optimum values. The maximum Dra value obtained for FAmx as‐prepared fiber specimens is significantly higher than that for FAx as‐prepared fiber specimens prepared at the optimum original ATP content. Similar to what is found for the orientation factors and achievable drawing properties, the tensile strength (σf) and initial modulus (E) of both drawn F2Ax and F2Amx fiber series specimens with a fixed draw ratio reach maximum values as the original and/or modified ATP contents approach the optimum values, respectively. The σf and E values of the F2Amx fiber specimens are always significantly higher than those of the corresponding F2Ax fiber specimens prepared at the same draw ratios and ATP contents but without being modified. To understand the interesting ultradrawing, orientation and tensile properties of FAx and FAmx fiber specimens, Fourier transform infrared spectral, specific surface area, transmission electron microscopic and elemental analyses of the original and modified ATPs were performed. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
Innovative supercritical carbon dioxide (scCO2)-assisted ultrahigh-molecular-weight-polyethylene (UHMWPE)/modified bacterial cellulose (MBC) as-spun fibers were found to display substantially lower dynamic transition temperatures than those acquired for scCO2-assisted UHMWPE or UHMWPE/MBC as-spun fibers prepared without scCO2-assistance or incorporation of MBC nanofibers. Multiple-step drawing methods were first-time applied to these finely ''relaxed'' scCO2-assisted UHMWPE/MBC fibers and considerably improved their achievable draw ratios (Dras), orientation factor (fos), and tensile tenacities (σtts). The best five-step drawn scCO2UHMWPE/MBC fiber displayed a particularly high σtt of 135 g d−1, which was ~35, ~3.75, and ~1.7 fold of σtts acquired for good steel fiber and the most appropriate single-step drawn scCO2-assisted UHMWPE and UHMWPE/MBC fibers, respectively. The particularly high Dras, fo, and σtts acquired for the best multiple-step drawn scCO2-assisted UHMWPE/MBC fibers is ascribed to their more ''relaxed'' UHMWPE structures, thinner lamellae, and successive increased drawing temperature in the multiple-step drawing processes.  相似文献   

6.
Dimensions of conical dies were found to have a significant influence on thermal, morphological, orientation, ultradrawing, and dynamic mechanical properties of the as‐prepared and/or drawn ultrahigh molecular weight polyethylene (UHMWPE) fiber specimens prepared in this study. Many demarcated “micro‐fibrils” were found paralleling to fiber direction of the as‐prepared UHMWPE fiber specimens. The percentage crystallinity, melting temperatures, orientation factor (fo) and achievable draw ratio (Dra) values of each as‐prepared UHMWPE fiber specimen prepared at a fixed length of outlet land reach a maximum value, as the entry angles of the conical die approach the optimum value at 75°. The maximum fo and Dra values obtained for each F2075‐y as‐prepared fiber series specimens prepared using the optimum entry angle reach another maximum value as their length of outlet land approach the optimum value of 6.5 mm. The ultimate tensile strengths and moduli of the drawn UHMWPE fibers prepared at the optimum entry angle and length of outlet land are significantly higher than those of fibers prepared at other conditions but stretched to the same draw ratio. Possible reasons accounting for the above interesting properties were discussed in this study. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
This is the first investigation to report the processing and properties of ultrahigh molecular weight polyethylene (UHMWPE)/functionalized activated nanocarbon (FANC) gel solutions with the aid of supercritical carbon dioxide (scCO2). The ultradrawing and ultimate tensile properties of scCO2UHMWPE and scCO2UHMWPE/FANC fibers were found to improve considerably compared to those of UHMWPE and UHMWPE/FANC fibers prepared in the conventional way. The maximum achievable draw ratio obtained for the optimal scCO2UHMWPE/FANC fibers drawn at 95°C reached 445. The highest tensile tenacity (σf) of the fully drawn scCO2UHMWPE/FANC fiber reached an extraordinary high value of 104 g/d, which is about 3.2 and 1.1 times of that of the optimal UHMWPE and UHMWPE/FANC fully drawn fibers, respectively. The σf obtained for the optimally fully drawn scCO2UHMWPE/FANC fiber is about 25 times of those of steel fibers and is the highest tensile tenacity ever reported for single‐stage drawn polymeric fibers. Considerably lower dynamic transition temperatures and evaluated thinner crystal lamellae nucleated off of extended chains or FANC nucleants were found for as‐prepared scCO2UHMWPE and scCO2UHMWPE/FANC fibers compared with UHMWPE and UHMWPE/FANC fibers, respectively. Specific surface area, morphological, and Fourier transform infrared analyses of the activated nanocarbon (ANC), acid‐treated activated nanocarbon (ATANC) and FANC nanofillers and investigation of thermal, morphological, and orientation factor properties of the as‐prepared and drawn UHMWPE, UHMWPE/FANC, scCO2UHMWPE, and scCO2UHMWPE/FANC fibers were performed to understand the remarkable ultradrawing, dynamic transition, and ultimate tensile properties obtained for scCO2UHMWPE and scCO2UHMWPE/FANC fibers. POLYM. ENG. SCI., 59:1462–1471 2019. © 2019 Society of Plastics Engineers  相似文献   

8.
The influences of the dispersion level of carbon nanotubes (CNTs) and functionalized CNTs on the transmittance properties of ultrahigh‐molecular weight polyethylene (UHMWPE) gel solutions and on ultradrawing properties of their as‐prepared fibers are reported. The transmittance properties suggest that the dispersion level of functionalized CNTs in UHMWPE/functionalized CNTs gel solution is significantly better than plain CNTs in UHMWPE/CNTs gel solutions. The orientation factors, achievable draw ratios, tensile strength (σf), and modulus (E) values of UHMWPE/CNTs (FxCy) and UHMWPE/functionalized CNTs (FxCf‐y) as‐prepared fiber specimens reached a maximum value as their CNT and functionalized CNT contents approached optimum contents at 0.00015 and 0.0001 wt%, respectively. The σf and E values of both FxC0.0012 and FxCf‐0.001 series fiber specimens prepared at their optimum CNT and functionalized CNT contents reached another maximum as their UHMWPE approached optimum UHMWPE concentration of 1.7 wt%. Possible reasons accounting for these interesting properties are proposed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
Two unsaturated polyesters based on maleic anhydride, phthalic anhydride, and sebasic acid with each of linear 1,6‐hexanediol (PEL) and cyclic 1,4‐cyclohexanediol (PEC) were prepared. Their structures were characterized by IR and 1H NMR spectra. Their composites were prepared by mixing different ratios (60, 70, and 80%) with talc and kaolin with polyester/styrene mixture. The effect of linear and cyclic glycols and the effect of filler type and concentration of these composites were studied in terms of their electrical properties and the hardness before and after aging. The thermal behavior of styrenated polyesters and their composites was studied using thermogravimetric analysis. It has been found that both fillers increase the thermal stability and decrease the weight loss. The permittivity ε′ and the dielectric loss ε″ were measured in the frequency range 100 Hz up to 100 kHz at room temperature 25°C ± 1. The polyester composite samples containing 70% filler lead to good electrical properties in addition to its resistance to thermal aging. The hardness value was increased by increasing the filler content before and after aging. The polyester composites based on cyclic glycol and loaded with 80% kaolin gave the highest hardness values. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
This investigation aims to improve the ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers by incorporating small amounts of functionalized activated nanocarbon particles with a wide range of specific surface areas (ca. 100–1,400 m2/g) during gel spinning processes of UHMWPE fibers. The ultradrawing, ultimate tensile, orientation properties, and “microfibril” characteristics of UHMWPE/functionalized activated nanocarbon fibers was discovered to improve considerably with the increase in specific surface areas of functionalized activated nanocarbon. An extraordinary high ultimate tensile strength at 95.8 g/d was obtained for the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber. This value is the highest value ever reported for one‐stage drawn UHMWPE fibers and is about 2.9 times that of the UHMWPE drawn fiber prepared in this study. In addition to thermal, ultimate tensile, and orientation factor properties of as‐prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers, specific surface area, Fourier transform infrared, and morphological analyses of original and functionalized activated nanocarbons were performed to comprehend the considerably improved ultradrawing, ultimate tensile properties, and microfibril characteristics of the UHMWPE/functionalized activated nanocarbon fibers. POLYM. ENG. SCI., 58:980–990, 2018. © 2017 Society of Plastics Engineers  相似文献   

11.
Three‐dimensional (3D) braided polyethylene (PE) fiber‐reinforced poly(methyl methacrylate) (PMMA), denoted as PE3D/PMMA, composites were prepared. Mechanical properties including flexural and impact properties, and wear resistance were tested and compared with those of the corresponding unidirectional PE fiber–PMMA (abbreviated to PEL/PMMA) composites. Both untreated and chromic acid‐treated PE fibers were used to fabricate the 3D composites in an attempt to assess the effect of chromic acid treatment on the mechanical properties of the composites. Relative changes of mechanical properties caused by fiber surface treatment were compared between the PE3D/PMMA and PEL/PMMA composites. The treated and untreated PE fibers were observed by scanning electron microscopy (SEM) and analyzed by X‐ray photoelectron spectroscope (XPS). SEM observations found that micro‐pits were created and that deeper and wider grooves were noted on the surfaces of the PE fibers. XPS analysis revealed that more hydroxyl (? OH) and carboxyl (? COOH) groups were formed after surface treatment. The physical and chemical changes on the surfaces of the PE fibers were responsible for the variations of the mechanical properties of the PE/PMMA composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 949–956, 2006  相似文献   

12.
A high ω‐6/ω‐3 fatty acid ratio in the soybean seed adversely affects human health. The objective of the present study was to improve the fatty acid biosynthesis to reduce the ω‐6/ω‐3 ratio by combining the FAD21A and FAD21B mutant alleles with α‐linolenic acid (ω‐3) related alleles from wild soybean. The F2 population comprising 2320 F2:3 lines developed from S08‐14717 × PI 483463 cross exhibited significant variation for fatty acid components. Of these, 114 lines were advanced to the F5:6 generation and genotyped for FAD21A and FAD21B alleles. The lines carrying mutant FAD21A and FAD21B alleles showed ~ 761 g kg?1 oleic, and ~ 50 g kg?1 linoleic acids, which reduced ω‐6/ω‐3 ratios to ~ 0.6. Conversely, the lines carrying FAD21A or FAD21B mutant alleles had 267 or 399 g kg?1 oleic, 327 or 471 g kg?1 linoleic, and 120 or 130 g kg?1 α‐linolenic acids concentration, respectively. The elevated α‐linolenic acid resulted in the reduction of ω‐6/ω‐3 ratios in the range 2.5–3.9. The present study demonstrated that combining FAD2 mutant alleles with α‐linolenic acid‐related alleles from wild soybean reduces the seed ω‐6/ω‐3 ratio.  相似文献   

13.
A scalable strategy to fabricate thermally conductive but electrically insulating polymer composites was urgently required in various applications including heat exchangers and electronic packages. In this work, multilayered ultrahigh molecular weight polyethylene (UHMWPE)/natural graphite (NG)/boron nitride (BN) composites were prepared by hot compressing the UHMWPE/NG layers and UHMWPE/BN layers alternately. Taking advantage of the internal properties of NG and BN fillers, the UHMWPE/NG layers played a decisive role in enhancing thermal conductivity (TC), while the UHMWPE/BN layers effectively blocked the electrically conductive pathways without affecting the thermal conductive pathways. The in-plane TC, electrical insulation, and heat spreading ability of multilayered UHMWPE/NG/BN composites increased with the increasing layer numbers. At the total fillers loading of 40 wt%, the in-plane TC of multilayered UHMWPE/NG/BN composites with nine layers was markedly improved to 6.319 Wm−1 K−1, outperforming UHMWPE/BN (4.735 Wm−1 K−1) and pure UHMWPE (0.305 Wm−1 K−1) by 33.45% and 1971.80%, respectively. Meanwhile, the UHMWPE/NG/BN composites still maintained an excellent electrically insulating property (volume resistance~5.40×1014 Ω cm ; breakdown voltage~1.52 kV/mm). Moreover, the multilayered UHMWPE/NG/BN composites also exhibited surpassing heat dissipation capability and mechanical properties. Our results provided an effective method to fabricate highly thermal conductive and electrical insulating composites.  相似文献   

14.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

15.
Two novel poly(1,4‐phenylenevinylene) (PPV) derivatives containing liquid crystalline oxadiazole side chains were prepared by a dehydrochlorination process. The homopolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole)‐1,4‐phenylenevinylene) (HO–PE6) is insoluble in common solvents, whereas the copolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole))‐(2‐methoxy‐5‐(2′‐ethylhexyloxy))‐1,4‐phenylenevinylene) (CO–PE6) is soluble in common solvents such as chloroform, THF, and p‐xylene. The molecular structure of CO–PE6 was confirmed by FTIR, 1H‐NMR, UV–vis spectroscopy, and polarized light microscopy. CO–PE6 showed a maximum emission at 556 nm in chloroform and at 564 nm in solid film, when excited at 450 nm. The maximum electroluminescence emission of the device indium–tin oxide (ITO)CO–PE6/Al is at 555 nm. The turn‐on voltage of LEDs based on CO–PE6 and MEH–PPV is 6.5 and 8.5 V, respectively. The electron mobility of CO–PE6 is higher than that of MEH–PPV based on the results of current–voltage and electrochemical behavior of both MEH–PPV and CO–PE6. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 396–403, 2004  相似文献   

16.
The effect of phase interaction induced by reactive compatibilization during high shear and extensional flow in polyamide (PA6) and ethylene‐co‐butyl acrylate (EBA) blends was studied using advanced dual bore capillary rheometer. The viscosity‐composition behavior of the uncompatibilized PA6/EBA blends exhibited negative deviation behavior from log‐additivity rule. The interfacial slip mechanism, operative between the matrix PA6 and dispersed EBA during shear flow was studied by the use of Lin's and Bousmina‐Palierne‐Utracki (BPU) model for viscosity for the blends under the processing conditions. On the other hand, the compatibilized PA6/EBA‐g‐MAH0.49/EBA blends with varying dispersed phase volume fraction show positive deviation behavior. The reactive compatibilizers EBA‐g‐MAH0.49 and EBA‐g‐MAH0.96 increased the phase interaction with adequate reduction in the dynamic interfacial tension, which favored the particle break‐up and stabilized the morphology in the compatibilized blends. The extensional viscosity of the blends has enhanced because of the inclusion of EBA in all the uncompatibilized and compatibilized blends. The melt elasticity and elasticity function were systematically studied from first normal stress coefficient functions (ψ1). The variation in the recoverable shear strain (γR), shear rate dependent relaxation time (λ) and shear compliance (Jc) under various shear rates were thoroughly analyzed for all the blend compositions. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
《Polymer Composites》2017,38(8):1689-1697
The effects of hybrid filler of zinc oxide and chitosan (chitosan–ZnO) on thermal, flexural, antimicrobial, chemical resistance, and hardness properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) composites with varying concentration of zinc oxide (ZnO) and further hybridized by chitosan (CS) were successfully studied. The composites were prepared using mechanical ball milling and followed by hot compression molding. The addition of ZnO to the UHMWPE matrix had lowered the melting temperature (T m) of the composite but delayed its degradation temperature. Further investigation of dual filler incorporation was done by the addition of chitosan to the UHMWPE/ZnO composite and resulted in the reduction of UHMWPE crystallization. The flexural strength and modulus had a notably high improvement through ZnO addition up to 25 wt% as compared to neat UHMWPE. However, the addition of chitosan had resulted in lower flexural strength than that of 12 wt% ZnO UHMWPE composite but still higher than that of neat UHMWPE. It was experimentally proven that the incorporation of ZnO and chitosan particles within UHMWPE matrix had further enhanced the antimicrobial properties of neat UHMWPE. Chemical resistance was improved with higher ZnO content with a slight reduction of mass change after the incorporation of chitosan. The hardness value increased with ZnO addition but higher incorporation of chitosan had lowered the hardness value. These findings have significant implications for the commercial application of UHMWPE based products. It appears that these hybrid fillers (chitosan–ZnO)‐reinforced UHMWPE composites exhibit superior overall properties than that of conventional neat UHMWPE. POLYM. COMPOS., 38:1689–1697, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Phase morphology, rheological, and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE)/PP/organo‐montmorillonite nanocomposites were investigated in this work. The results of TEM and XRD indicated that the organo‐montmorillonite PMM prepared with the complex intercalator [2‐methacryloyloxyethyldodecyldimethylammonium bromide/poly(ethylene glycol)] were exfoliated and dispersed into UHMWPE matrix, and the synergistic effect of the complex intercalator on the exfoliation and intercalation for montmorillonite occurred. Besides, the presence of PMM in UHMWPE matrix was found able to lead to a significant reduction of melt viscosity and enhancement in tensile strength and elongation at break of UHMWPE, except that izod‐notched impact strength was without much obvious change. The dispersed PMM particles exhibited a comparatively large two‐dimensional aspect ratio (Lclay/dclay = 35.5), which played an important role in determining the enhancement of mechanical properties of UHMWPE nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
Poly(L ‐lactide) (PLLA) composites incorporating various inorganic fillers (ifR‐PLA) were prepared by the melt blending technique, and their mechanical and thermal properties were evaluated. The filler types influenced the mechanical properties of ifR‐PLA; for those incorporating particle‐ and whisker‐type fillers the tensile moduli were 3.1–3.7 and 3.7–4.5 GPa, respectively, and the flexural moduli were 4.1–4.8 and 4.8–6.1 GPa. It was found that the tensile strength and modulus, as well as the flexural modulus, of ifR‐PLA incorporating whisker‐type fillers increased in proportion to the volume percent of the fillers (Vf). The flexural strength of ifR‐PLA incorporating 9Al2O3 · 2B2O3 whiskers showed a similar increase, while that of ifR‐PLA incorporating CaCO3 whiskers showed a decrease with increasing Vf. This difference may be because the 9Al2O3 · 2B2O3 with its large aspect ratio kept its original fibrous shape, while the CaCO3 lost its fibrous shape during the blending process. However, the reinforcing effect of these fillers was relatively low compared with that known for the corresponding composites of the conventional polymeric materials, probably because of the poor surface adhesion of PLLA to the fillers.

Comparison of effect on storage moduli of different fillers.  相似文献   


20.
Ceramics of composition (1?x)BaTiO3xBi(Zn1/2Ti1/2)O3 (BT‐BZT) were prepared by solid‐state synthesis; they have been shown to exhibit excellent properties suited for high‐temperature dielectric applications. The X‐ray diffraction data showed a single‐phase perovskite structure for all the compositions prepared (x ≤ 0.1 BZT). The compositions with less than 0.075 BZT exhibited tetragonal symmetry at room temperature and pseudo‐cubic symmetry above it. Most notably, a significant improvement in insulation properties was measured with the addition of BZT. Both low‐field AC impedance and high‐field direct DC measurements indicated an increase in resistivity of at least two orders of magnitude at 400°C with the addition of just 0.03 BZT (~107 Ω‐cm) into the solid solution as compared to pure BT (~105 Ω‐cm). This effect was also evident in dielectric loss data, which remained low at higher temperatures as the BZT content increased. In conjunction with band gap measurements, it was also concluded that the conduction mechanism transitioned from extrinsic for pure BT to intrinsic for 0.075 BZT suggesting a change in the fundamental defect equilibrium conditions. It was also shown that this improvement in insulation properties was not limited to BT‐BZT, but could also be observed in the paraelectric SrTiO3–BZT system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号