首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer Composites》2017,38(3):472-478
Polylactide stereocomplex (sc‐PLA) prepared by blending equivalent proportion of poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) and its composites reinforced with 10, 20, and 30% flax fibers were fabricated by melt compounding and followed by injection molding. The mechanical properties, crystallinity, cross‐section morphology, and heat resistance of sc‐PLA and flax/sc‐PLA composites were compared. The results showed that homocrystallites (hc) and stereocomplex crystallites (sc) were formed simultaneously in sc‐PLA and its composites, with a melting temperature at ∼170 and ∼210°C, respectively. The crystallinity and sc content of composite increased with the increasing content of the flax fibers. The sc content of 30% flax/sc‐PLA composite could reach 98.4%, 32% higher than that of sc‐PLA (66.4%). When compared with nonblended PLLA, heat resistance of sc‐PLA increased slightly, but at the expense of mechanical properties. By the addition of flax fibers, the mechanical properties of flax/sc‐PLA composite improved significantly. The highest tensile strength, Young's modulus, and notched Izod impact strength of flax/sc‐PLA composite were 52.90 MPa, 6.42 GPa, and 5.27 kJ/m2, respectively, improved by 54, 132, and 343% when compared with sc‐PLA. Moreover, the heat resistance of composite was also improved greatly by reinforcing with flax fibers. The Vicat softening temperature of 30% flax/sc‐PLA composite could achieve 162.5°C, nearly 100°C higher than that of PLLA. POLYM. COMPOS., 38:472–478, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
The effect of annealing on the microstructure and melting behavior of a solution‐cast polylactide (PLA) stereocomplex (sc) was systematically investigated by differential scanning calorimetry and small‐angle X‐ray scattering. A preorder state, an intermediate form between the amorphous and crystalline states, was found in the solution‐cast poly(l ‐lactide)–poly(d ‐lactide) blend. When the annealing temperature (Ta) was below 220 °C, a part of the preorder state directly formed thicker sc crystallites; these corresponded to the second melting peak, which appeared around 250 °C during the heating process. Although the rest melted and became the amorphous phase, it formed a thinner lamella under the restriction of the unmelted initial sc crystallites during annealing; the melting process of this lamella was parallel to that of the new melting peak, which appeared around 220 °C. The melting of the initial crystal formed as the solvent volatilized corresponded to the range of the first melting temperature around 230 °C. When Ta was above 220 °C, the preorder state melted completely, and the initial crystal experienced perfection process. Furthermore, the highest melting temperature of PLA sc (254.1 °C, with a fusion enthalpy of 125.5 J/g) was obtained when Ta was 235 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44626.  相似文献   

3.
Crystallization kinetics behavior and morphology of poly(3‐hydroxybutyrate) (PHB) blended with of 2–10 wt% loadings of poly(L ‐ and D ‐lactic acid) (PLLA and PDLA) stereocomplex crystallites, as biodegradable nucleating agents, were studied using differential scanning calorimetry, polarizing‐light optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Blending PLLA with PDLA at 1:1 weight ratio led to formation of stereocomplexed PLA (sc‐PLA), which was incorporated as small crystalline nuclei into PHB for investigating melt‐crystallization kinetics. The Avrami equation was used to analyze the isothermal crystallization of PHB. The stereocomplexed crystallites acted as nucleation sites in blends and accelerated the crystallization rates of PHB by increasing the crystallization rate constant k and decreasing the half‐time (t1/2). The PHB crystallization was nucleated most effectively with 10 wt% stereocomplexed crystallites, as evidenced byPOM results. The sc‐PLA complexes (nucleated PHB crystals) exhibit much small spherulite sizes but possess the same crystal cell morphology as that of neat PHB based on the WAXD result. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

5.
Poly(lactide) (PLA) is an interesting biodegradable polymer but has limited application because of its brittleness and low thermal stability. We found that both drawbacks of PLA were solved by forming stereocomplexes augmented with natural rubber (NR). Equal amounts of poly(l ‐lactide) (PLLA) and poly(d‐ lactide) (PDLA) stereoisomers were blended to form a stereocomplex (St‐PLA). Varying amounts of NR (5–30% by weight) were added simultaneously to equal amounts of the stereo isomers by melt blending. FTIR and XRD spectra demonstrated that, despite the added NR, the stereocomplex structures were still generated and complete. Stereocomplex crystallinity decreased with increasing NR content, verified by DSC and XRD, as well as polarizing optical micrographs which showed fewer spherulites at higher NR content. Measured glass transition temperatures (Tg) of St‐PLA/NR blends were significantly lower than for neat St‐PLA, exhibiting shifts to as low as 46°C at 30%wt NR content, because of rubber dispersed in St‐PLA segments expanding the free volume and enhancing chain mobility. Thermal stability of the blends, estimated by TGA, showed desired results, for example, at the 50% weight loss point, the temperature of all St‐PLA/NR blends moved to higher temperatures than neat St‐PLA. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

6.
A poly(L ‐lactic acid) (PLLA)/poly(D ‐lactic acid) (PDLA) stereocomplex was prepared from an equimolar mixture of commercial‐grade PLLA and PDLA by melt processing for the first time. Crosslinked samples were obtained by the radiation‐induced crosslinking of the poly(lactic acid) (PLA) stereocomplex mixed with triallyl isocyanurate (TAIC). The PLA stereocomplex and its crosslinked samples were characterized by their gel behavior, thermal and mechanical measurements, and enzymatic degradation. The crosslinking density of the crosslinked stereocomplex was described as the gel fraction, which increased with the TAIC content and radiation dose. The maximum crosslinking density was obtained in crosslinked samples of PLA/3% TAIC and PLA/5% TAIC irradiated at doses higher than 30 kGy. The stable crosslinking networks that formed in the irradiated PLA/TAIC substantially suppressed the segmental mobility for the crystallization of single crystals as well as stereocomplex crystals. The crosslinking network also significantly improved the mechanical properties and inhibited the enzymatic degradation of crosslinked PLA/3% TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Supramolecular poly(?‐capolactone)/poly(lactide) alternating multiblock copolymers were prepared by UPy‐functionalized poly(lactide)‐b‐ poly(?‐capolactone)‐b‐ poly(lactide) copolymers. The prepared supramolecular polymers (SMPs) exhibit the characteristic properties of thermoplastic elastomers. The stereo multiblock SMPs (sc‐SMPs) were formed by blending UPy‐functionalized poly(l ‐lactide)‐b‐ PCL‐b‐ poly(l ‐lactide) (l ‐SMPs) and UPy‐functionalized poly(d ‐lactide)‐b‐ PCL‐b‐ poly(d ‐lactide) (d ‐SMPs) due to stereocomplexation of the PLLA and PDLA blocks. Sc‐SMPs with low content of d ‐SMPs (≤20%) are transparent, elastic solids, while those having high d ‐SMPs content are opaque, brittle solids. The effects of l ‐SMPs/d ‐SMPs mixing ratios on thermal, crystallization behaviors, crystal structure, mechanical and hydrophilic properties of sc‐SMPs were deeply investigated. The incorporation of UPy groups depresses the crystallization of polymer, and the stereocomplex formation accelerates the crystallization rate. The used initiator functionalized polyhedral oligomeric silsesquioxanes causes a different effect on the crystallization of PLA and PCL blocks. The tensile strength and elongation at break of l d /d d ‐SMPs (d represents the initiator diethylene glycol) are significantly larger than that of l p /d p ‐SMPs (p represents the initiator polyhedral oligomeric silsesquioxanes), and their heat resistance and hydrophilicity can be also modulated by the l ‐SMPs/d ‐SMPs mixing ratios and the different initiators. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45575.  相似文献   

8.
PLLA and stereocomplexed polylactide (sc‐PLA) nanofibers were formed by electrospinning solutions of the polymers in HFIP. A highly semi‐crystalline sc‐PLA nanofiber having only sc crystallites was confirmed by WAXD analysis. The diameters of the nanofibers of both polymers decreased slightly when they were annealed at 60 °C, which was near Tg. Enzyme degradation of both as‐spun PLLA and sc‐PLA nanofibers by proteinase K from Tritirachium album was carried out. The rate of degradation of the nanofibers can be controlled by varying annealing conditions, hence the extent of crystallinity.

  相似文献   


9.
Poly(lactic acid) (PLA) is a bio‐based and compostable polymer that has quickly developed into a competitive material, but the control of crystallinity is a bottleneck in extended utilization. The crystallization of PLA has been a rich topic because of the existence of two enantiomeric forms of poly(L‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) can form stereocomplex (SC) crystal with high melting point that can be used to control the crystallization behaviors. The SC crystal was regarded as an effective nucleating agent for promoting the crystallization rate and crystallinity of PLA. We investigated cold crystallization of PLLA/PDLA (1:1) mixture with in situ WAXS measurements and found that the homo‐crystal of PLA formed earlier than the SC‐crystal in the mixture within the measured temperature range, which is different from the melting crystallization. The final crystalline structures are in correspondence with the melting and cold crystallization temperature, and the transition of homo‐PLA (δ to α) is not altered by the crystallization procedure. The SC‐crystal can be detected in both cold and melting crystallization of the mixture at the temperatures lower than 150 °C, which is conflict with the reported results. A new crystallization mechanism of the mixture was proposed to understand the crystallization behaviors in PLLA/PDLA mixtures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45663.  相似文献   

10.
Polylactide (PLA) is a eco‐friendly and biodegradable material that can be synthesized from renewable resources. PLA features poly(d ‐lactic acid) (PDLA) and poly(l ‐lactic acid) (PLLA) enantiomers. Supercritical fluid (SCF) technology is a very promising method for the stereocomplexation between PDLA and PLLA enantiomers. This study acquires stereocomplex (sc‐)PLA particles with diverse sizes and behaviors by controlling the experimental conditions. Various parameters including polymer concentration, reaction temperature, stirring speed, pressure reducing speed, and final temperature were controlled to adjust size and behavior of sc‐PLA particles. Additionally, we analyzed the effect of subsequent processing following SCF (such as homogenization, mechanical stirring, and sonication) on the size and morphological behavior of sc‐PLA particles. Finally, the mechanical strengths of different PLA composites featuring different sc‐PLA filler sizes were determined. The mechanical strength of PLA composites was significantly improved when using smaller filler sizes. POLYM. ENG. SCI., 58:1193–1200, 2018. © 2017 Society of Plastics Engineers  相似文献   

11.
The miscibility, crystallization behavior, and component interactions of two binary blends, poly(L ‐lactide) (L ‐PLA)/poly(vinylpyrrolidone) (PVP) and poly(D ,L ‐lactide) (DL ‐PLA)/PVP, were studied with differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy. The composition‐dependent changes of the glass‐transition temperature (Tg) and degree of crystallinity (Xc) of the L ‐PLA phase indicated that L ‐PLA and PVP were immiscible over the composition range investigated. However, the sharp decrease of Xc with increasing PVP content in the second heating run demonstrated that the cold crystallization process of L ‐PLA was remarkably restricted by PVP. In DL ‐PLA/PVP blends, the existence of two series of isolated Tg's indicated that DL ‐PLA and PVP were phase‐separated, but evidence showed that there was some degree of interaction at the interface of the two phase, especially for the blends with low DL ‐PLA contents. FTIR measurements showed that there was no appreciable change in the spectra of L ‐PLA/PVP with respect to the coaddition of each component spectrum, implying the immiscibility of the two polymers. In contrast to L ‐PLA, the intermolecular interaction between DL ‐PLA and PVP was detected by FTIR; this was evidenced by the observation of a high‐frequency shift of the C?O stretching vibration band of PVP with increasing DL ‐PLA content, which suggested some degree of miscibility. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 973–979, 2003  相似文献   

12.
How stress and temperature impact the movement of poly(lactic acid) (PLA) chains in the process of tensile film stretching was studied. The motion mode of chains was investigated through the study of the strain‐induced crystallization and orientation through changes in the draw temperature (Td), draw ratio, and draw rate. The crystallinity and orientation degrees of the PLA films were measured by differential scanning calorimetry, Fourier transform infrared spectroscopy, and polarized optical microscopy. According to the competition between the orientation caused by the stretching and relaxation of chains under the temperature field, the motion modes of PLA chains during strain were divided into four types, modes I–IV. When Td was 100°C, the PLA chains acted in mode I, in which the relaxation rate of chains was so fast that no crystallinity or orientation could be obtained. Beyond a draw rate of 20 mm/min at a Td of 90°C, the type of chain movement changed from mode I to II. In mode II, only crystallites could be reserved after unloading. Chains in the PLA film moved in mode III at a Td of 80°C; then, both the crystallization and orientation were enhanced monophonically with increasing draw rate. Beyond the draw rate of 10 mm/min at a Td of 70°C, the orientation rate of chains was much faster than the relaxation one, and the motion mode transformed from mode III to IV. Then, obvious decreases in the crystallinity and orientation were observed with further increases in the draw rate; this resulted from the destruction of the crystallites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42969.  相似文献   

13.
In the general processing temperature range of poly(L ‐lactic acid) (PLLA) articles (210–240 °C), PLLA/poly(D ‐lactic acid) (PDLA) stereocomplex (SC) crystallites melted just above the endset temperature of SC melting (228–238 °C) and recrystallized during cooling were found to act as the most effective nucleating agents for enhancing the crystallization of PLLA compared to partially melted SC crystallites (211–227 °C) or those melted far above the endset temperature of SC melting (240 and 250 °C) and recrystallized during cooling. The high nucleating effect of the SC crystallites melted in the temperature range of 228–238 °C was found to be caused by their smaller sizes or the larger number of SC crystallites per unit mass. The incorporation of such SC crystallites facilitates the processing of PLLA articles having high crystallinity and, therefore, high heat‐resistance in a shorter period to reduce the production cost.

  相似文献   


14.
Among the biobased polymers developed, poly‐l ‐lactide (PLLA ) has been the most widely used in many fields because of its excellent cost ? property balance. However, the properties and functionalities of PLLA cannot easily be controlled like the conventional petroleum‐based polymers, retarding the progress of its manufacturing on a large scale. One approach to obtain high‐performance and specialty polylactides is to use stereocomplex‐type polylactides (sc‐PLA ) that can be obtained by mixing PLLA and its enantiomer poly‐d ‐lactide. The other approach is to use copolymers consisting of polylactides (PLA ) and other types of macromolecular chains. Here we demonstrate how such high‐performance and specialty PLA polymers can be designed and synthesized. These macromolecular designs and synthetic methodologies are highly effective for controlling the structure and properties of PLA polymers for use as biomedical and high‐end industrial materials. © 2016 Society of Chemical Industry  相似文献   

15.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

16.
The effects of the molecular weight of poly(D ‐lactic acid) (PDLA), which forms stereocomplex (SC) crystallites with poly(L ‐lactic acid) (PLLA), and those of processing temperature Tp on the acceleration (or nucleation) of PLLA homocrystallization were investigated using PLLA films containing 10 wt% PDLA with number‐average molecular weight (Mn) values of 5.47 × 105, 9.67 × 104 and 3.67 × 104 g mol–1 (PDLA‐H, PDLA‐M and PDLA‐L, respectively). For the PLLA/PDLA‐H and PLLA/PDLA‐M films, the SC crystallites that were ‘non’‐melted and those that were ‘completely’ melted at Tp values just above their endset melting temperature and recrystallized during cooling were found to act as effective accelerating (or nucleation) agents for PLLA homocrystallization. In contrast, SC crystallites formed from PDLA‐L, having the lowest Mn, were effective accelerating agents without any restrictions on Tp. In this case, the accelerating effects can be attributed to the plasticizer effect of PDLA‐L with the lowest Mn. The accelerating effects of SC crystallites in the PLLA/PDLA‐H and PLLA/PDLA‐M films was dependent on crystalline thickness for Tp values below the melting peak temperature of SC crystallites, whereas for Tp values above the melting peak temperature the accelerating effects are suggested to be affected by the interaction between the SC crystalline regions and PLLA amorphous regions.  相似文献   

17.
Stereo diblock polylactides (SDB‐PLAs) composed of relatively short poly(d ‐lactide) (PDLA) segments and relatively long poly(l ‐lactide) (PLLA) segments were synthesized to have a wide number‐average molecular weight (Mn) range of 2.5 × 104–2.0 × 105 g mol?1 and d ‐lactyl unit content of 0.9–38.6%. The effects of incorporated short PDLA segments (Mn = 2.0 × 103–7.7 × 103 g mol?1) on crystallization behavior of the SDB‐PLAs were first investigated during heating after complete melting and quenching or during slow cooling after complete melting. Stereocomplex (SC) crystallites can be formed at d ‐lactyl unit content as low as 4.3 and 5.8% for heating and slow cooling, respectively, and for Mn of PDLA segments as low as 2.0 × 103 and 3.5 × 103 g mol?1, respectively. With decreasing Mn and increasing d ‐lactyl unit content, the cold crystallization temperature during heating decreased and the crystallization temperature during slow cooling increased. With increasing d ‐lactyl unit content, the melting enthalpy (ΔHm) of SC crystallites during heating and the crystallinity (Xc) of SC crystallites after slow cooling increased, whereas ΔHm of PLLA homo‐crystallites during heating and Xc of PLLA homo‐crystallites after slow cooling decreased. The total ΔHm of SC crystallites and PLLA homo‐crystallites during heating and the total Xc after slow cooling became a minimum at d ‐lactyl unit content of 10–15% and gave a maximum at d ‐lactyl unit content of 0%. Despite the accelerated crystallization of some of SDB‐PLAs, the low values of total ΔHm and Xc at d ‐lactyl unit content of 10–15% are attributable to the formation of two crystalline species of SC crystallites and PLLA homo‐crystallites.  相似文献   

18.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

19.
This study investigated the effect of polylactic acid (PLA)/poly‐d ‐lactide (PDLA) stereocomplex (ST) on the improvement of the mechanical and thermal properties of various rubber‐toughened PLAs. In this work, natural rubber (NR), synthetic polyisoprene rubber (IR), silicone rubber (SI), acrylic rubber (ACM), acrylic core–shell rubber (CSR), thermoplastic copolyester (TPE) and thermoplastic polyurethane (TPU) were chosen as the toughening agents. 5 wt% PDLA was melt‐blended with PLA to form ST crystals in the presence of 15 wt% rubber in an internal mixer at 180 °C and 50 rpm. It was found that the melting temperature of ST crystal (Tm,sc) and the impact strength of ST/rubber blends were strongly correlated with the rubber domain size. For the blends of ST with compatible rubbers (ACM, CSR, TPE and TPU), the rubber domain sizes tended to be smaller with higher Tm,sc and higher impact strength than the blends with incompatible rubbers (NR, IR and SI). However, the presence of ST crystals in PLA/incompatible rubber blends, especially the blends with NR and IR, led to a significant increase in the rubber domain size and plunges in tensile toughness and impact strength. On the other hand, the presence of these crystals in PLA/compatible blends did not change the rubber size or the impact strength significantly compared with those without ST crystals except in the case of ST/ACM, which resulted in a large increase in the impact strength. Among all rubber types, CSR provided the highest impact strength for both the PLA and ST systems. © 2019 Society of Chemical Industry  相似文献   

20.
Polymeric materials prepared from renewable natural resources are now being accepted as “bio‐based polymers”, because they are superior to the conventional petroleum‐based polymers in reducing the emission of carbon dioxide. Among them, poly(L ‐lactide) (PLLA) prepared by fermentation and polymerization is paid an immediate attention. Although PLLA exhibits a broad range of physico‐chemical properties, its thermal and mechanical properties are somewhat poorer for use as ordinary structural materials. For improving these inferior properties, a stereocomplex form consisting of PLLA and its enantiomer poly(D ‐lactide) (PDLA) has high potential because of showing high melting nature (230 °C). It can be formed by simple polymer blend of PLLA and PDLA or more easily with stereoblock polylactides (sb‐PLA) which are PLLA/PDLA block copolymers. These novel PLA polymers, named “Neo‐PLA”, can provide a wide range of properties that have never be attained with single PLLA. Neo‐PLA retains sustainability or bio‐based nature, because both monomers L ‐ and D ‐lactic acids are manufactured from starch by fermentation. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号