首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s?1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46337.  相似文献   

2.
Electrospinning is a simple method of producing nanofibers by introducing electric field into the polymer solutions. We report an experimental investigation on the influence of processing parameters and solution properties on the structural morphology and average fiber diameter of electrospun poly ethylene oxide (PEO) polymer solution. Experimental trials have been conducted to investigate the effect of solution parameters, such as concentration, molecular weight, addition of polyelectrolyte in PEO solution, solvent effect, as well as governing parameter, such as applied voltage. The concentration of the aqueous PEO solution has shown noteworthy influence on the fiber diameter and structural morphology of electrospun nanofibers. At lower concentrations of PEO polymer solution, the fibers showed irregular morphology with large variations in fiber diameter, whereas at higher concentrations, the nanofibers with regular morphology and on average uniform fiber diameter were obtained. We find that the addition of polyelectrolytes, such as sodium salt of Poly acrylic acid (PAA) and Poly allylamine hydrochloride (PAH), increases the conductivity of PEO solutions and thereby decreases the bead formation in electrospun nanofibers. The increase in applied voltage has been found to affect the structural morphology of nanofiber while the addition of ethanol in PEO solution diminishes the bead defects. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
In recent times, electrospun nanofibers have been widely studied from several biotechnological approaches; in this work, poly(acrylic acid) (PAA) solutions mixed with chitosan and alginate were electrospun and characterized to determine the behavior of these fibers when used in combination with bacteria, different samples were incubated with the bacterial strains: Streptomyces spp., Micromonospora spp., and Escherichia coli and a OD600 test was performed. The formation of nanofibers via electrospinning and the physicochemical properties of the obtained fibers were evaluated. Results showed that the presence of chitosan enhanced the thermal stability of PAA, since PAA/alginate fibers lost 5% of their mass at 41°C, whereas PAA/chitosan lost this amount at around 125°C. The fibers demonstrated suitable characteristics to be used as a bacteria bioreactor.  相似文献   

4.
In this study, nylon‐6 nanofiber mats containing Fe2+ ions were fabricated via electrospinning. The resultant electrospun nylon‐6/FeCl2 nanofiber mats were characterized by SEM, TEM, Fourier transform IR spectroscopy, wide angle XRD and DSC. Unique morphological features, such as spider's‐web‐like morphologies, were observed and became evident with increasing additive Fe2+ ions. The metastable γ form was predominant in the as‐spun nylon‐6 nanofibers. The relative intensity of such γ form gradually decreased with increasing additive Fe2+ ions, indicative of transformation of the crystalline structure in the electrospun nylon‐6/FeCl2 nanofibers due to strong molecular interactions between the nylon‐6 backbone and the additive Fe2+ ions. The effects of additive Fe2+ ions on the mechanical properties of both nonwoven nanofiber mats and single nanofibers were investigated. In particular, Young's modulus of nylon‐6/FeCl2 single nanofibers gradually increased from 1.46 to 5.26 GPa with increasing additive Fe2+ ions. © 2013 Society of Chemical Industry  相似文献   

5.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Nylon‐6 and nanoclay/nylon‐6 composite nanofibers were prepared by electrospinning technique, in which formic acid was used as a solvent for good solubility of nylon‐6. The diameter of nylon‐6 and nanoclay/nylon‐6 nanofibers was below 350 nm and had smooth surfaces. The DSC heating curves of nylon‐6 and composites nanofibers show two endotherm behaviors, Tm1 (about 214°C) and Tm2 (about 220°C), corresponding to the melting events of γ‐form and α‐form crystals, respectively. The WAXs study showed that the γ‐crystalline phase predominantly present in both nylon‐6 and nanoclay/nylon‐6 nanofibers. The mechanical properties of the nanoclay/nylon‐6 composite nanofibers were higher than neat nylon‐6 electrospun nanofibers, which was decreased as the quantity of the clay increased. It might be due to the aggregation of nanoclay at high concentration. The thermal properties of the composite nanofibers were higher than neat nylon‐6 nanofibers. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
The development of surface microstructure with specific features in electrospun nanofibers has attracted more and more attention in recent years. In this article, a common biological polyester, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was electrospinning into nanofibers with “coral‐like” surface microstructure by a conventional‐electrospinning setup. The effect of the process parameters on the microstructure in electrospun nanofibers were investigated via a series of experiments. The formation mechanism of this feature structure and cytotoxicity assays of PHBV membrane were also discussed. The water contact angle of the electrospun PHBV membrane was higher than that of the PHBV cast film due to a very‐rough fiber surface including porous beads when PHBV was electrospun from the concentration of 4 wt %. Because of special hole shape and size distribution, the physical structure of surface of PHBV electrospun fibers offered it special properties, such as specific‐surface area, hydrophilic–hydrophobic properties, adhesion properties of cells and biological substances, etc. The demonstrated method of form coral structure would contribute to the areas such as filtration, sensor, tissue engineering scaffolds, and carriers of drugs or catalysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
A series of poly(amic acid) (PAA) solutions were prepared by sol–gel condensation of 4,4′‐oxydianiline (ODA) and 4,4′‐oxydiphthalic anhydride (ODPA), containing various wt % (5, 10, 15) of an iron oxide precursor, that is, tris(acetylacetonato)iron(III) complex. The resulting PAA solutions were electrospun at 78 kV and collected as webs of nonwoven nanofibers of diameter ~60–70 nm and subsequently converted to iron oxide‐modified polyimide (PI) nanofibers by slow thermal imidization. Aminopropyl triethoxysilane (APTES) and tetraethoxyorthosilicate (TEOS) were used as coupling agent and silica precursor, respectively, to enhance the compatibility between organic polymer matrix and inorganic moieties. SEM images reveal smooth and defect‐free surface morphologies of the nanofibers. Superparamagnetic properties of the nanofibers were revealed by vibrating sample magnetometer (VSM). FT‐infrared spectroscopy (IR), powder XRD, thermogravimetric analysis, and differential scanning calorimetry were employed to systematically characterize material structural properties, thermal stabilities, etc. Nanowebs showed excellent thermal stability around 446°C, with a glass transition temperature around 270°C. The above study demonstrates a good example for fabrication of highly thermally stable bead‐free nanofiber webs by needleless electrospinning. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40432.  相似文献   

9.
Aromatic polyimides (PIs) are high-performance polymers with rigid heterocyclic imide rings and aromatic benzene rings in their macromolecular backbones. Owing to excellent mechanical properties and thermal stability, as well as readily adjustable molecular structures, PIs have been widely adopted for many applications related to electronics, aerospace, automobile, and other industries. In recent years, PI fibers prepared by electrospinning of polyamic acid (PAA) precursor nanofibers followed by imidization (commonly known as electrospun PI nanofibers) have attracted growing interests. Herein, the preparation, evaluation, and application of electrospun PI nanofibers are reviewed. PI polymers and the electrospinning technique are introduced first followed by the preparation of electrospun nanofibers of homo-PI, co-PI, blend-PI, and PI composite. Subsequently, the mechanical and thermal properties of electrospun PI nanofibers are presented; in particular, the mechanical properties of individual electrospun PI nanofibers are highlighted. Thereafter, various applications of electrospun PI nanofibers are outlined, including reinforcement of composites, Li-ion battery separators, fuel cell proton exchange membranes, sensors, microelectronics, high-temperature filtration media, super-hydrophobic PI nanofibers, and PI-based carbon nanofibers. In the final section of conclusions and perspectives, future research endeavors and high-value applications of electrospun PI nanofibers are discussed.  相似文献   

10.
The electrospun nanofibers emerge several advantages because of extremely high specific surface area and small pore size. This work studies the effect of PVA nanofibers diameter and nano‐sized TiO2 on optical properties as reflectivity of light and color of a nanostructure assembly consisting polyvinyl alcohol and titanium dioxide (PVA/TiO2) composite nanofibers prepared by electrospinning technique. The PVA/TiO2 composite spinning solution was prepared through incorporation of TiO2 nanoparticles as inorganic optical filler in polyvinyl alcohol (PVA) solution as an organic substrate using the ultrasonication method. The morphological and optical properties of collected composites nanofibers were highlighted using scanning electron microscopy (SEM) and reflective spectrophotometer (RS). The reflectance spectra indicated the less reflectance and lightness of composite with higher nanofiber diameter. Also, the reflectance and lightness of nanofibers decreased with increasing nano‐TiO2 concentration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The electrospinning of sodium alginate, a natural biopolymer, was performed from aqueous solutions by blending with PEO, a biodegradable polymer. The conductivity and surface tension of solutions of sodium alginate and PEO were investigated by standard methods. The morphology, thermal, and mechanical properties of the electrospun nanofibers were studied using field emission scanning electron microscopy (FE‐SEM), fourier transform infrared spectroscopy (FT‐IR), energy dispersive X‐ray (EDX), differential scanning calorimetry (DSC) and tensile testing. Uniform, smooth, and ultra‐fine nanofibers with diameters of ~140–190 nm were obtained with solution concentrations of 6–7.2% and sodium alginate/PEO volume ratios of 30:70–50:50. The mechanical strength of the electrospun sodium alginate/PEO mats with good morphology was 21 MPa compared to PEO mats which had a strength of only 10 MPa. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
Most polymers that are electrospun are dissolved in a solvent and are spun at ambient temperature. Gelatin, a natural polymer, has excellent potential in medical applications as a biodegradable polymer, especially when combined with sodium alginate. Unfortunately, gelatin/water or gelatin/sodium alginate/water solutions cannot be electrospun at ambient temperature without the incorporation of substances that are considered potentially toxic to the human body, such as acetic acid. In this study, gelatin/water solutions with and without sodium alginate were successfully electrospun without the use of additional solvents by using heated water solutions. The effect of electrospinning parameters such as solution concentration and applied voltage on the nanofiber morphology of these solutions was studied. These nanofibers from heated gelatin/water solutions exhibited good morphology with an average size of 291 ± 67 nm at 18% concentration to 414 ± 52 nm at 20% concentration. Similar sizes were observed when sodium alginate was incorporated into the gelatin/water solutions, although the relationship was dependent upon the amount of sodium alginate in the solution as well as the total concentration. Typically, these nanofibers containing sodium alginate were produced at a lower gelatin concentration compared with the gelatin/water nanofibers because of the increase of viscosity and conductivity of the solutions due to the addition of the highly viscous and conductivity sodium alginate. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
Electrospinning solutions containing native silk fibrils with varied diameter and length were firstly achieved by dissolving silk in CaCl2/Formic acid solvents. The structure of nanofibrils significantly improved the spinnability of electrospinning solution. The diameter of electrospun silk fibroin (SF) nanofibers increased from 40 nm to 1.8 μm, which could be achieved through increasing the solution concentration from 2 to 10%, implying a good size control over a wide range in this process. The structure of SF nanofibers transferred from random coil to beta‐sheet, before and after ethanol treatment, respectively. The mechanical properties of the SF nanofibers were improved significantly with stress and strain at break of 11.15 MPa and 7.66% in dry state, and 3.32 MPa and 174.0% in wet state. The strategy for preparing SF nanofibers with improved mechanical properties and fiber diameter control over a wide range provides benefits for the application of this material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41236.  相似文献   

14.
The production of poly(acrylic acid) (PAA) nanofibers by the centrifugal spinning of PAA solutions in water is reported. The effect of the spinneret rotational speed and concentration of PAA solutions on the diameter of nanofibers and on their quality (assessed by the absence of beads) is discussed. The main physical properties of PAA such as glass-transition temperature (Tg) are studied in detail and compared to the feature of the as-received homopolymer. It is shown that the glass-transition temperature of the bulk PAA and PAA nanofibers (as measured by differential scanning calorimetry) depends on the heating rate according to a Williams–Landel–Ferry-like equation. Raman spectroscopy data provided additional information about the differences between the as-received polymer and the nanofibers. Preliminary results on antibacterial properties of the PAA nanofibers are reported. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47480.  相似文献   

15.
BACKGROUND: Stimuli‐sensitive materials show enormous potential in the development of drug delivery systems. But the low response rate of most stimuli‐sensitive materials limits their wider application. We propose that electrospinning, a technique for the preparation of ultrafine fibrous materials with ultrafine diameters, may be used to prepare materials with a fast response to stimuli. RESULTS: Poly[styrene‐co‐(maleic sodium anhydride)] and cellulose (SMA‐Na/cellulose) hydrogel nanofibers were prepared through hydrolysis of precursor electrospun poly[styrene‐co‐(maleic anhydride)]/cellulose acetate (SMA/CA) nanofibers. In the presence of diethylene glycol, the SMA/CA composite nanofibers were crosslinked by esterification at 145 °C, and then hydrolyzed to yield crosslinked SMA‐Na/cellulose hydrogel nanofibers. These nanofibers showed better mechanical strengths and were pH responsive. Their water swelling ratio showed a characteristic two‐step increase at pH = 5.0 and 8.2, with the water swelling ratio reaching a maximum of 27.6 g g?1 at pH = 9.1. CONCLUSION: The crosslinked SMA‐Na hydrogel nanofibers supported on cellulose showed improved dimensional stability upon immersion in aqueous solutions. They were pH responsive. This new type of hydrogel nanofiber is a potential material for biomedical applications. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
In this study, we are introducing a new class of Polyurethane (PU) nanofibers containing silver nanoparticles (NPs) by electrospinning. A simple method not depending on the addition of foreign chemicals has been used to self‐synthesize of silver NPs in/on PU nanofibers. Typically, a sol?gel consisting of AgNO3/PU/N,N‐dimethylformamide (DMF) has been electrospun and aged for a week, so silver NPs have been created in/on PU nanofibers. Syntheses of silver NPs were carried out by exploiting the reduction ability of the DMF solvent which is the main constituent to obtain PU electrospun nanofibers in decomposition of silver nitrate precursor into silver NPs. Physiochemical characterizations confirmed well oriented nanofibers and good dispersing of pure silver NPs. Various parameters affecting utilizing of the prepared nanofibers on various nano‐biotechnological fields have been studied. For instance, the obtained nanofiber mats were checked for mechanical properties which showed the improvement of the tensile strength upon increase in silver NPs content. Moreover, the nanofibers were subjected to 10 times successive washing experiments with using solid to liquid ratio of 3 : 5000 for 25 h, UV spectroscopy analysis reveals no losses of silver NPs from the PU nanofibers. 3T3‐L1 fibroblasts were cultured in presence of the designed nanofibers. The morphological features of the cells attached on nanofibers were examined by BIO‐SEM, which showed well attachment of cells to fibrous mats. The cytotoxicity results indicated absence of toxic effect on the 3T3‐L1 cells after cell culturing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
We report the synthesis of all‐solid‐state polymeric electrolytes based on electrospun nanofibers. These nanofibers are composed of polyethylene oxide (PEO) as the matrix, lithium perchlorate (LiClO4) as the lithium salt and propylene carbonate (PC) as the plasticizer. The effects of the PEO, LiClO4 and PC ratios on the morphological, mechanical and electrochemical characteristics were investigated using the response surface method (RSM) and analysis of variance test. The prepared nanofibrous electrolytes were characterized using SEM, Fourier transform infrared, XRD and DSC analyses. Conductivity measurements and tensile tests were conducted on the prepared electrolytes. The results show that the average diameter of the nanofibers decreased on reduction of the PEO concentration and addition of PC and LiClO4. Fourier transport infrared analysis confirmed the complexation between PEO and the additives. The highest conductivity was 0.05 mS cm?1 at room temperature for the nanofibrous electrolyte with the lowest PEO concentration and the highest ratio of LiClO4. The optimum nanofibrous electrolyte showed stable cycling over 30 cycles. The conductivity of a polymer film electrolyte was 29 times lower than that of the prepared nanofibrous electrolyte with similar chemical composition. Furthermore, significant fading in mechanical properties was observed on addition of the PC plasticizer. The results obtained imply that further optimization might lead to practical uses of nanofibrous electrolytes in lithium ion batteries. © 2019 Society of Chemical Industry  相似文献   

18.
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Electrospun nanofibers are promising candidates in the nanotechnological applications due to the advantages of the nanofibrous morphology. Therefore, many attempts were reported to modify the electrospun mats to gain more beneficial properties. In the present study, we are introducing a strategy to synthesize electrospun polymeric nanofiber mats containing spider-net binding the main nanofibers. Addition with long stirring time of a metallic salt having tendency to ionize rather than formation of sol–gel in the host polymer solution reveals to synthesize a spider-net within the electrospun nanofibers of the utilized polymer. Nylon6, polyurethane and poly(vinyl alcohol) have been utilized; NaCl, KBr, CaCl2 and H2PtCl6 have been added to the polymeric solutions. In the case of nylon6 and poly(vinyl alcohol), addition of the inorganic salts resulted in the formation of multi-layers spider-network within the electrospun nanofibers mats. The synthesized spider-nets were almost independent on the nature of the salt; the optimum salt concentration was 1.5 wt%. The metallic acid led to form trivial spider-nets within both of nylon6 and poly(vinyl alcohol) nanofibers. In a case of polyurethane, few spider-nets were formed after salt addition due to the low polarity of the utilized solvents. According to TEM analysis, the synthesized spider-net consisted of joints; the later issued from the main nanofibers at Taylor's cone zone. The spider-net improved the mechanical properties and the wetability of the nylon6 nanofiber mats, accordingly a mat having amphiphilic feature has been prepared.  相似文献   

20.
In this research, nanocomposite nanofibrous webs of poly(acrylic acid) (PAA)/multi‐walled carbon nanotubes (MWNTs) were obtained via electrospinning. The effect of MWNTs concentration on the morphology and mechanical properties of PAA/MWNTs nanofibers was investigated by changing the MWNTs content from 0 to 5 wt%. The results showed that average diameter of nanofibers increased with increasing the MWNTs concentration and presence of MWNTs led to the enhancement of mechanical properties. Also, the results revealed that the strength, modulus, and elongation at break of samples increased 3.22, 2.70, and 4.27 fold, respectively, after adding 3 wt% of MWNTs. In addition, the effect of rotating speed of collector on the orientation of PAA nanofibers and its effect on mechanical properties was investigated. Scanning electron microscopy (SEM) studies demonstrated that the degree of nanofibers orientation increased with the augmentation of drum speed to 25 rps. Moreover, the average nanofibers diameter decreased with the increase of drum speed. Improvement of nanofiber orientation resulted in superior mechanical properties that is, higher strength and modulus of aligned nanofiber layers were obtained in comparison to nonaligned layers (12.6 and 26.6 fold, respectively). POLYM. COMPOS., 37:3149–3159, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号