首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Conducting polyaniline (PANI) is being explored as promising material for protection of metals against corrosion. It has the possibility of making smart coatings on metals, which can prevent corrosion even in scratched areas where bare metal surface is exposed to the aggressive environment. However, PANI coatings have poor barrier and mechanical properties. The barrier property of coatings can be enhanced by the addition of appropriate filler particles. Also it has been demonstrated that nanoparticulate fillers give much better barrier properties even at lower concentrations. In this study, the effect of zinc nanoparticles on the anticorrosive property of PANI coating on iron samples has been investigated. The PANI/Zn nanocomposite was synthesized by in situ polymerization of aniline in the presence of Zn nanoparticles. The nanocomposite was characterized by using FTIR, conductivity measurement, cyclic voltammetry, and AFM techniques. Results showed that PANI/Zn nanocomposite coating has improved corrosion protection effect when compared with pure PANI coating. The corrosion current of PANI/Zn coated samples were found to be much lower than that of pure PANI coated samples. The results were referred to the good barrier properties of Zn nanoparticles and improvement in electrochemical corrosion protection of PANI coating in the presence of Zn nanoparticles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Ultrafine fibers consisting of blends of polyaniline doped with p‐toluene sulfonic acid and poly(L ‐lactic acid) were prepared by electrospinning. The presence of polyaniline resulted in fibers with diameters as thin as 100–200 nm and a significant reduction of bead formation. These fibers were visually homogeneous, and this indicated good interactions between the components of the polyaniline/poly(L ‐lactic acid) blend. The high interaction between the components and the rapid evaporation of the solvent during electrospinning resulted in nanofibers with a lower degree of crystallinity in comparison with cast films. The electrical conductivity of the electrospun fiber mats was lower than that of blend films produced by casting, probably because of the lower degree of crystallinity of the polyaniline dispersion and the high porosity of the nonwoven mat. This novel system opens up new and interesting opportunities for applications in biomedical devices, biodegradable materials, and sensors, among other things. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Spherical nickel oxide (NiO) nanoparticles were prepared by using nickel chloride as precursor in the ethylene glycol as solvent and urea as precipitant. The X‐ray diffraction study showed that NiO has single‐phase cubic structure with average crystallite size of 35 nm. The prepared NiO nanoparticles were incorporated into polyaniline (PANI) matrix during in situ chemical oxidative polymerization of aniline with different molar ratios of aniline: NiO (12 : 1, 6 : 1, and 3 : 1) at 5°C using (NH4)2S2O8 as oxidant in aqueous solution of sodium dodecylbenzene sulfonic acid, as surfactant and dopant under N2 atmosphere. The synthesized composites have been characterized by means of X‐ray diffraction (XRD), thermogravimetric analysis, Fourier transform infrared (FTIR), scanning electron microscopy, TEM, and vibrating sample magnetometer for its structural, thermal, morphological, and magnetic investigation. The XRD and FTIR studies show that the NiO particles are in the composite. The room temperature conductivities of the synthesized PANI, PANI/NiO (12 : 1), (6 : 1), and (3 : 1) composites were found to be 3.26 × 10?4, 1.88 × 10?4, 1.5 × 10?4, and 4.61 × 10?4 S/cm, respectively. The coercivity (Hc) and remnant magnetization (Mr) of NiO, PANI/NiO NCs (12 : 1), (6 : 1), and (3 : 1) at 5 K was found to be 8.22 × 10?2, 6.31 × 10?2, 6.42 × 10?2, 6.27 × 10?2 T, and 6.64 × 10?3, 1.83 × 10?4, 3.07 × 10?4, and 3.98 × 10?4 emu/g, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The synthesis of polyaniline (PANI) containing different carbon nanotubes (CNTs) by in situ polymerization is reported in this study. The samples were characterized by X‐ray diffraction and scanning electron microscopy. Fourier transform infrared and ultraviolet–visible spectroscopy were used to determine the change in structure of the polymer/CNT composites. Thermogravimetric analysis showed that the composites had better thermal stability than the pure PANI. Photoluminescence spectra showed a blueshift in the PANI–single‐walled nanotube (SWNT) composite. Low‐temperature (77–300 K) electrical transport properties were measured in the absence and presence of a magnetic field up to 1 T. Direct‐current conductivity exhibited a nonohmic, three‐dimensional variable range hopping mechanism. The room‐temperature magnetoconductivity of all of the investigated samples except the PANI–SWNT composite were negative; however, it was positive for the PANI–SWNT composite, and its magnitude decreased with increasing temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Copper nanoclusters were synthesized by a chemical reduction of an aqueous copper salt solution by sodium borohydride. A polyaniline nanocomposite containing copper nanoclusters was prepared by polymerizing a monomer aniline hydrochloride solution containing the copper nanoclusters using ammonium persulfate as an oxidizing agent. The synthesized nanocomposite was characterized using various techniques such as UV‐visible spectroscopy, FTIR spectroscopy, X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The presence of copper was confirmed by XRD and the size of the copper clusters was found to be ~53 nm, which is in good agreement with that obtained from the TEM. The synthesized nanocomposite was used to serve as a catalyst in a Wacker oxidation reaction for the conversion of 1‐decene to 2‐decanone in the presence of molecular oxygen. The formation of 2‐decanone was confirmed using GC‐MS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2412–2417, 2003  相似文献   

6.
We carried out a scanning electron microscopy study to investigate the morphology of a polystyrene (PS)/montmorillonite nanocomposite. Monodispersed spherical particles, about 200 nm in diameter, were observed when PS/montmorillonite powder was dispersed in water, whereas planar silicate sheets were found for cetyltrimethylammonium bromide‐exchange montmorillonite. The fracture surface of a PS/clay nanocomposite pellet sample showed a lot of fibrils rather than the smooth surface of a pure PS pellet. After the PS/clay nanocomposite pellet was chemically etched, flaky montmorillonite particles were homogeneously dispersed in the PS matrix. A film sample, prepared by the pressing of the PS/clay nanocomposite melt, revealed that the montmorillonite primary particles oriented parallel to the surface, and the corresponding X‐ray diffraction distribution map of silicon atoms confirmed that the dispersed particles were montmorillonite primary particles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 66–69, 2002  相似文献   

7.
This article introduces a ternary nanocomposite-based flexible thin film ammonia sensor developed on transparent polyethylene terephthalate (PET) substrate in the well-known in situ chemical oxidative polymerization technique. The nanocomposite consists of three different materials: polyaniline (PANI), reduced graphene oxide (rGO), and zinc ferrite (ZF). Keeping the PANI amount constant, seven PANI/rGO/ZF (PRZ) samples are produced by performing stoichiometric variation between rGO and ZF. Later on, various structural, morphological, and spectroscopic analysis of all the composite materials is accomplished with field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy (UV–Vis). The sensing performance of the as-produced sensors toward ammonia (NH3) is examined in the concentration range from 250 ppb to 100 ppm. The study reveals the excellent sensing ability of the PRZ3 sensor (rGO = 30%, ZF = 20%) achieving minimum and maximum responsivity values of ~51% and ~1052%, respectively, at the lowest (250 ppb) and highest (100 ppm) concentration of ammonia. The sensor also exhibits admirable repeatability, good dynamic responsivity, rapid response (tres ~2.9–5 s), moderately faster recovery (trec ~37.9–69.7 s), superb linearity against ppm variation (R2 ~ 0.989), low detection limit (~123 ppb), and exceptional selectivity toward ammonia. The substrate temperature variation divulges that room temperature (30°C) is the ideal temperature for getting outstanding responsivity of the sensor. The study is further accompanied by humidity variation in the incoming air and bending flexibility test of the substrate. A compulsory and legitimate model regarding the sensing mechanism is presented at the end.  相似文献   

8.
BACKGROUND: Poly(1‐amino‐2‐naphthol‐4‐sulfonic acid) and its copolymers with aniline are a new class of conducting polymers which can acquire intrinsic protonic doping ability, leading to the formation of highly soluble self‐doped homopolymers and copolymers. Free ? OH and ? NH2 groups in the polymer chain can combine with other functional groups that could be present in protective paints which can thus be successfully used as antistatic materials. RESULTS: This paper reports the formation of nanotubes of polyaniline on carrying out oxidative polymerization of aniline in the presence of 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) in p‐toluenesulfonic acid (PTSA) as an external dopant. The presence of ? SO3H groups in the ANSA comonomer allows the copolymer to acquire intrinsic protonic doping ability. The polymerization mechanism was investigated by analysing the 1H NMR, 13C NMR, Fourier transform infrared and X‐ray photoelectron spectra of the copolymers and homopolymers, which revealed the involvement of ? OH/? NH2 in the reaction mechanism. Scanning and transmission electron microscopy showed how the reaction route and the presence of a dopant can affect the morphology and size of the polymers. Static decay time measurements were also carried out on conducting copolymer films prepared by blending of 1 wt% of copolymers of ANSA and aniline with low‐density polyethylene (LDPE) which showed a static decay time of 0.1 to 0.31 s on dissipating a charge from 5000 to 500 V. CONCLUSION: Copolymers of ANSA with aniline were synthesized in different reaction media, leading to the formation of nanotubes and nanoparticles of copolymer. Blends of 1 wt% of PTSA‐ and self‐doped copolymers of ANSA and aniline with LDPE can be formulated into films with effective antistatic properties. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The catalytic activity of CuZn catalysts in the synthesis of methanol is related to those reduced Cu species, which originate from the CuxZn1−xO solid solution of wurtzite-like structure. Copper cations in the CuxZn1−xO solid solution are localized in the extended stacking faults of the ZnO lattice. Copper sites could be supposedly described as the product of introducing (OH)Cu(OH) to the planar defects of zinc oxide structure. Hydroxyl groups stabilize the planar defects of ZnO. The process of the samples reduction leads to the formation of flat Cu0 particles over the surface of zinc oxide. The planar defects of ZnO structure are preserved in the reduced state. During the reoxidation, copper atoms return back to the extended stacking faults of ZnO as the tape-like clusters of flat-square coordinated copper cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号