首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid (AMPS) and attapulgite (APT). To enhance the swelling rate (SR) of the copolymer, sodium bicarbonate was used as a foaming agent in the course of copolymerization. Furthermore, for improving the properties of swollen hydrogel, such as strength, resilience and dispersion, the copolymer was surface‐crosslinked with glycerine and sodium silicate, and then the surface‐crosslinked copolymer was blended with aluminum sulfate and sodium carbonate in post treatment process. The influences of some reaction conditions, such as amount of AMPS, APT, and initiator, and neutralization degree of acrylic acid on water absorbency in 0.9 wt% NaCl aqueous solution both under atmospheric pressure (WA) and load (WAP, P ≈ 2 × 103 Pa) were investigated. In addition, the effect of them on SR was also studied. The WA and WAP of the superabsorbent composite prepared under optimal conditions in 0.9 wt% NaCl aqueous solution were 52 g·g?1 and 8 g·g?1, respectively. Besides, the SR was fast, and it could reach 0.393 mL·(g·s)?1. Moreover, the swollen hydrogel possessed excellent salt resistance, hydrogel resilience and dispersion. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
A fast‐swelling superabsorbent composite was prepared by solution polymerization of acrylate, acrylamide, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid and oxidized starch phosphate. Ethanol, propyl alcohol, butyl alcohol, and sodium bicarbonate were used as foaming agents to produce fast‐swelling characteristics. The structure of the superabsorbent composite was characterized using Fourier transform infrared spectroscopy (FTIR). The influences of the amount of water, acrylamide, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid, oxidized starch phosphate, initiator, and trihydroxymethyl propane glycidol ether, as well as the neutralization degree of acrylic acid on the equilibrium swelling degree and swelling rate of the superabsorbent composite, were investigated. The equilibrium swelling degree of the superabsorbent composite prepared in a 0.9 wt% NaCl aqueous solution was 52 g g?1, and the swelling rate reached 0.86 mL g?1 s?1. The swelling kinetics was also investigated, and the results indicate that swelling of the superabsorbent composites obeys Schott's pseudo second‐order kinetics model. POLYM. ENG. SCI., 56:1267–1274, 2016. © 2016 Society of Plastics Engineers  相似文献   

3.
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide‐co‐sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′‐methylenebisacrylamide, 1,4‐butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non‐Fickian‐type diffusion, and few followed a case II– or super–case II‐type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006  相似文献   

4.
In this work, a novel poly(acrylic acid‐coN‐acryloylmorpholine)/attapulgite superabsorbent composite was prepared by graft copolymerization among acrylic acid, N‐acryloylmorpholine and attapulgite in aqueous solution, using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The result from FTIR spectra showed that  OH of attapulgite participated in graft copolymerization with acrylic acid and N‐acryloylmorpholine. Proper monomer ratio and atapulgite content could form a loose surface, and improve reswelling ability and initial swelling rate. The buffer action of the  COOH and  COO groups in the superabsorbent composite keeps the water absorbency a rough constant in the pH range of 4.4–9.6. Both polarity and structure of an organic solvent are responsible for the phase transition point of the superabsorbent composite. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
A novel poly(acrylate‐co‐acrylamide)/expanded vermiculite (EVMT) superabsorbent composite was synthesized by aqueous solution polymerization method. The water absorbency of the superabsorbent composite still reaches 850 g/g when 50 wt % EVMT is added, which is significant in decreasing the production cost of the superabsorbent composites. By controlling the molar ratio of acrylic acid monomer and acrylamide monomer, and neutralization degree of acrylic acid, the hydrophilic groups on the composite can be adjusted, and it is found that the collaborative absorbent effect of ? CONH2, ? COOK, and ? COOH groups is superior to that of single ? CONH2, ? COOK, or ? COOH group. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 735–739, 2007  相似文献   

6.
In this work, a series of novel hydroxyethyl cellulose‐ g‐poly(acrylic acid)/attapulgite (HEC‐g‐PAA/APT) superabsorbent composites were prepared through the graft polymerization of hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), and attapulgite (APT) in aqueous solution, and the composites were characterized by means of Fourier‐transform spectroscopy, scanning electron microscopy, and transmission electronmicroscopy. The effects of polymerization variables including concentrations of the initiator and crosslinker and APT content on water absorbency were studied, and the swelling properties in various pH solutions as well as the swelling kinetics in various saline solutions were also systematically evaluated. Results showed that the introduction of 5 wt% APT into HEC‐g‐PAA polymeric network could improve both water absorbency and water absorption rate of the superabsorbent composites. In addition, the superabsorbent composites retained high water absorbency over a wide pH range of 4–10, and the swelling kinetics of the superabsorbent composites in CaCl2 and FeCl3 solutions exhibited a remarkable overshooting phenomenon. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
A new superabsorbent copolymer, poly(sodium acrylate‐co‐sodium 1‐(acryloyloxy) propan‐2‐yl phosphate) [P(SA‐co‐SAPP)], was synthesized by a novel prepared monomer, 1‐(acryloyloxy) propan‐2‐yl phosphoryl dichloride. The swelling properties of the superabsorbent were investigated by comparison with poly(sodium acrylate) (PSA) and the copolymer of poly(sodium acrylate‐co‐2‐hydroxypropyl acrylate) [P(SA‐co‐HPA)]. The results showed that (1) the superabsorbent containing sodium 1‐(acryloyloxy) propan‐2‐yl phosphate had higher water absorbency at general testing conditions; (2) the swelling properties of P(SA‐co‐SAPP) and PSA were obviously influenced by pH of solutions, which were different from that of P(SA‐co‐HPA); (3) the swelling process and the saturated water absorbency of all superabsorbents were remarkably affected by cations, especially multivalent ones, while barely affected by anions. POLYM. ENG. SCI., 47:728–737, 2007. © 2007 Society of Plastics Engineers.  相似文献   

8.
In this article, urease was immobilized in a conducting network via complexation of poly(1‐vinyl imidazole) (PVI) with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS). The preparation method for the polymer network was adjusted by using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) study revealed that enzyme immobilization had a strong effect on film morphology. The proton conductivity of the PVI/PAMPS network was measured via impedance spectroscopy, under humidified conditions. The basic characteristics (Michealis‐Menten constants, pHopt, pHstability, Topt, Tstability, reusability, and storage stability) of the immobilized urease were determined. The obtained results showed that the PAA/PVI polymer network was suitable for enzyme immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A novel starch‐graft‐poly(acrylamide)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of starch, acrylamide (AM), and attapulgite micropowder using N.N‐methylene‐bisacrylamide (MBA) as a crosslinker and ammonium persulphate (APS) as an initiator in aqueous solution, followed by hydrolysis with sodium hydroxide. The effects on water absorbency, such as amount of crosslinker, initiator, attapulgite, weight ratio of acrylamide to starch in the feed, gelatinization conditions of starch and molar ratio of NaOH to acrylamide, and so forth, were investigated. These superabsorbent composites were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The water absorbencies for these superabsorbent composites in water and saline solution were investigated, and water retention tests were carried out. Results obtained from this study showed that the water absorbency of superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibit absorption of 1317 g H2O/g sample and 68 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1351–1357, 2005  相似文献   

10.
A novel semi‐interpenetrating polymer networks (semi‐IPNs) porous salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid and acrylamide using polyethylene glycol as semi‐IPNs composite, N,N′‐methylenebisacrylamide, triene propanol phosphate, and trihydroxymethyl propane glycidol ether as crosslinking agents, methanol, propanol, and butanol as foaming agents, and L ‐ascorbic acid and peroxide hydrogen as initiators. To improve the properties of swollen hydrogel, such as strength, resilience, permeabilities, and dispersion, the copolymer was surface‐crosslinked, and then blended with aluminum sulfate, sodium carbonate, and sodium 1‐octadecanol phosphate in the course of post treatment. The influences of reaction conditions on properties of superabsorbent composite were investigated and optimized, and the water absorbency of superabsorbent composite prepared at optimal conditions in 0.9 wt% NaCl aqueous solution under atmospheric pressure and certain load (P ≈ 2 × 103 Pa) were 61 g g?1 and 16.7 g g?1, respectively. Moreover, the swelling rate reached 22.003 × 10?3 g (g s)?1. And the excellent hydrogel properties, such as hydrogel strength, resilience, permeabilities, and dispersion were also obtained. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
A novel poly(acrylic acid)/attapulgite (APT)/sodium humate (SH) superabsorbent composite was synthesized through the graft copolymerization reaction of acrylic acid on APT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. Various effects on the water absorbency, including the amounts of the crosslinker, initiator, APT, and SH, were investigated. The superabsorbent composite was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy. The superabsorbent composite synthesized under optimal synthesis conditions with an APT concentration of 20% and an SH concentration of 20% exhibited absorption of 583 g of H2O/g of sample and 63 g of H2O/g of sample in distilled water and in a 0.9 wt % NaCl solution, respectively. The slow‐release property of SH from the superabsorbent composite into water was measured, and a test of the water retention of the superabsorbent composite in soil was also carried out experimentally with and without the superabsorbent composite. The results showed that the superabsorbent composite had not only good water retention but also an additional slow‐release property of SH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 37–45, 2007  相似文献   

12.
Al3+‐attapulgite (Al3+‐APT) was prepared by treating attapulgite (APT) with AlCl3 aqueous solution of various concentrations. The poly(acrylic acid)/Al3+‐attapulgite (PAA/Al3+‐APT) superabsorbent composite was prepared by reaction of partly neutralized acrylic acid, and Al3+‐APT in aqueous solution using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The surface morphology of the composite was investigated by SEM, and the Al3+‐APT composite generated a relatively planar surface comparing the nature APT. The effects of Al3+‐APT on hydrogel strength and swelling behaviors, such as equilibrium water absorbency, swelling rate, and reswelling capability, of the superabsorbent composites were also studied. The hydrogel strength and reswelling capability were improved, however, the equilibrium water absorbency and swelling rate decreased with increasing AlCl3 solution concentration. The equilibrium water absorbency firstly increased, and then decreased with increasing Al3+‐APT content. The results indicate that Al3+‐APT acts as an assistant crosslinker in the polymeric network, which has great influences on hydrogel strength and swelling behaviors of the PAA/Al3+‐APT superabsorbent composites. POLYM. ENG. SCI., 47:619–624, 2007. © 2007 Society of Plastics Engineers.  相似文献   

13.
Using partly neutralized acrylic acid as monomer, kaoline ultrafine powder as filler and N,N′‐(dimethyl)acrylamide as crosslink agent, poly(sodium acrylate)/kaoline superabsorbent composite was synthesized by aqueous solution polymerization method. Using the superabsorbent composite as collagen, a hydrogel was prepared. The influence of the neutralization degree of superabsorbent collagen, the compositions, the concentration, and the pH value of exterior solution on the swelling behavior of the hydrogel was investigated. It was found that the swelling capability of the hydrogel depended on the groups on the collagen. The swelling capability of the hydrogel relied on the ionic intensity, molecular polarity, molecular volume, as well as the concentration of exterior solution. When the pH value of exterior solution was equal to seven, the hydrogel has a maximum swelling value of 800 times. POLYM. ENG. SCI. 46:324–328, 2006. © 2006 Society of Plastics Engineers  相似文献   

14.
The effect of acid activation and thermal treatment of attapulgite on water absorbency of superabsorbent composite were investigated. Under the same preparation conditions, superabsorbent composite prepared with natural attapulgite exhibited a water absorbency of 639 g/g and it merely kept 71% of its initial water absorbency after 5 times of swelling–deswelling–reswelling test. However, superabsorbent composites prepared with 2–10 M hydrochloric acid acidified attapulgite and 100–400°C thermal treated attapulgite respectively exhibited the water absorbency of 884–1,241 g/g and 701–1,515 g/g. Also, those superabsorbent composites can keep 87% and 85% of their initial water absorbency after 5 times of swelling–deswelling–reswelling test, respectively. These results showed that, compared with superabsorbent composite prepared with natural attapulgite, the comprehensive water‐absorbing properties of poly(acrylic acid)/ attapulgite superabsorbent composites were improved effectively by acid activation and thermal treatment of attapulgite. This improvement of water absorbencies and gel strength of superabsorbent composite may be due to synthetical factors such as changes in the crystalline structure and the specific surface area and improvement of the number and the activity of hydroxyl groups of attapulgite, which in turn influence the grafting efficiency of monomer, crosslinking density, and the structure of superabsorbent composite network. POLYM. COMPOS., 28:397–404, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
A novel superabsorbent composite, poly(acrylic acid‐co‐acrylamide)/potassium humate (PAA‐AM/KHA), was prepared by aqueous solution polymerization from acrylic acid, acrylamide, and potassium humate (KHA) with N,N′‐methylenebisacrylamide as a crosslinker and potassium peroxydisulfate as an initiator. The effects of incorporated KHA on the water absorbency, swelling rate, and reswelling capability were investigated. The swelling property of PAA‐AM/KHA in various saline solutions was studied systematically. The results show that the comprehensive properties and especially salt‐resistant ability of PAA‐AM/KHA were enhanced. There was a linear relationship between the saturated water absorbency and the minus square root of the ionic strength of the external medium, and the water absorbency of PAA‐AM/KHA in various salt solutions had the following order: NH4Cl(aq) = KCl(aq) = NaCl(aq) > MgCl2(aq) > CaCl2(aq) > AlCl3(aq) > FeCl3(aq). Moreover, the polymeric net structure of PAA‐AM/KHA was examined with respect to that of poly(acrylic acid‐co‐acrylamide). The results indicate that the polymeric net of PAA‐AM/KHA was improved by the introduction of a moderate amount of KHA into the superabsorbent composite and made more suitable for agriculture and horticulture applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
Proton conducting polymer electrolyte membranes were produced by blending of poly(2,5‐benzimidazole) (ABPBI) and poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS) at several stoichiometric ratios with respect to polymer repeating units. The membranes were characterized by using Fourier transform infrared spectroscopy for interpolymer interactions and scanning electron microscope for surface morphology. Thermal stability of the materials was investigated by thermogravimetric analysis. Glass transition temperatures of the samples were measured via differential scanning calorimetry. The spectroscopic measurements and water uptake studies indicate a complexation between ABPBI and PAMPS that inhibited polymer exclusion up on swelling in excess water. Proton conductivities of the anhydrous and humidified samples were measured using impedance spectroscopy. The proton conductivity of the humidified ABPBI:PAMPS (1 : 2) blend showed a proton conductivity of 0.1 S/cm, which is very close to Nafion 117, at 20°C at 50% relative humidity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004  相似文献   

18.
Superabsorbent polymer composites (SAPCs) are very promising and versatile materials for biomedical applications. This study concentrates on the development of novel cellulose‐based SAPC, Poly(acrylic acid‐co‐acrylamide‐co?2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted nanocellulose/poly(vinyl alcohol) composite, P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA, as a potential drug delivery vehicle. Amoxicillin was selected as a model drug, which is used for the treatment of Helicobacter pylori induced peptic and duodenal ulcers. P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA was synthesized by graft copolymerization reaction, and FTIR, XRD, SEM, and DLS analyses were performed for its characterization. Equilibrium swelling studies were conducted to evaluate the stimuli‐response behavior of the SAPC and found that equilibrium swelling was dependent on pH, contact time, temperature, ionic strength, concentration of crosslinker and PVA. Maximum drug encapsulation efficiency was found out by using different concentrations of amoxicillin. Drug release studies were carried out at simulated gastric and intestinal fluids and the release % was observed as maximum in intestinal fluids within 4 h. The drug release kinetics was investigated using Peppas' potential equation and follows non‐Fickian mechanism at pH 7.4. Thus, the drug release experiments indicate that P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA would be a fascinating vehicle for the in vitro administration of amoxicillin into the gastrointestinal tract. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40699.  相似文献   

19.
Two latices—the poly(dimethylsiloxane) (PDMS)/poly(methyl methacrylate‐co‐butyl acrylate‐co‐methacrylic acid) system (PA latex) and the PDMS/poly(vinyl acetate‐co‐butyl acrylate) system (PB latex)—were prepared by seeded emulsion polymerization, and PA/PB complex latices were obtained through the interparticle complexation of the PA latex with the PB latex. In addition, for the further study of the interparticle complexation of the PA latex with the PB latex, copolymer latices [PDMS/methyl methacrylate‐co‐butyl acrylate‐co‐vinyl acetate‐co‐methacrylic acid) (PC)] were prepared according to the monomer recipe of the complex latices and the polymerization process of the component latices. The properties of the obtained polymer latices and complex latices were investigated with surface‐tension, contact‐angle, and viscosity measurements. The mechanical properties of the coatings obtained from the latices were investigated with tensile‐strength measurements. The results showed that, in comparison with the two component latices (PA latex and PB latex) and the corresponding copolymer latices (PC latices), the PA/PB complex latices had lower surface tension, lower viscosities, and better wettability to different substrates. The tensile strengths of the coatings obtained from the complex latices were higher than the tensile strengths of the coatings from the two component latices and copolymer latices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2522–2527, 2004  相似文献   

20.
In this work, a series of chitosan‐g‐poly(acrylic acid)/sepiolite (CTS‐g‐PAA/ST) superabsorbent composites containing raw sepiolite, acid‐activated sepiolite, and cation‐exchanged sepiolite were synthesized by free‐radical graft polymerization in aqueous solution, using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The effects of raw sepiolite, acid‐activated sepiolite, and cation‐exchanged sepoilite on equilibrium water absorbency, swelling rate, and swelling behavior in different pH value solution of superabsorbent composites were systematically investigated. The results from FTIR spectra showed that chitosan and sepiolite participated in graft polymerization reaction with acrylic acid. The introduction of acid‐activated and cation‐exchanged sepiolite into chitosan‐g‐poly(acrylic acid) polymeric network could improve water absorbency and swelling rate compared with that of the raw sepiolite. All prepared samples have similar swelling behavior in different pH solutions and the equilibrium water absorbencies of samples keep roughly constant in the pH range from 4 to 12. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号