首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A novel fluorinated diamine monomer with a keto group, 4‐[4‐amino‐2‐trifluoromethyl phenoxy]‐4′‐[4‐aminophenoxy]benzophenone (ATAB) was prepared by reacting dihydroxybenzophenone with 4‐chloronitrobenzene and 2‐chloro‐5‐nitrotrifluoromethylbenzene in the presence of potassium carbonate followed by catalytic reduction with palladized carbon (10%). Fluorinated polyimides IVa–e were synthesized from the diamine mentioned above via a two‐step method (thermal and chemical imidization). Polyimides IVa–e have inherent viscosities in the range 0.65–1.06 dL g?1 (thermal imidization) and 0.82–1.56 dL g?1 (chemical imidization). The polyimides prepared by chemical imidization exhibit excellent solubility. Polyimide films exhibit tensile strength, elongation and tensile modulus in the ranges 96–106 MPa, 9–13% and 1.1–1.7 GPa, respectively. The T10 values of the polyimides are in the range 540–598 °C in nitrogen and 545–586 °C in air, with more than 50–60% char yield. They have Tg values between 244 and 285 °C. The prepared polyimides show cut‐off wavelengths in the range 365–412 nm and transmittance at 450 nm in the range 80.9–94.2%. The dielectric constants of the polyimide films are in the range 3.10–3.77 at 1 kHz and 3.04–3.66 at 10 kHz, with moisture absorption of 0.14–0.40%. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
A series of novel homo‐ and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5‐bis (4‐aminophenyl) pyridine and 2‐(4‐aminophenyl)‐5‐aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3′, 4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60–9.64 dL/g (c = 0.5 g/dL in DMAC, 30°C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548–598°C in air. The glass transition temperatures of the PMDA‐based samples are in the range of 395–438°C, while the BPDA‐based polyimides show two glass transition temperatures (Tg1 and Tg2), ranging from 268 to 353°C and from 395 to 418°C, respectively. The flexible films possess tensile modulus in the range of 3.42–6.39 GPa, strength in the range of 112–363 MPa and an elongation at break in the range of 1.2–69%. The strong reflection peaks in the wide‐angle X‐ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity. The polymer films are insoluble in common organic solvents exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1844–1851, 2006  相似文献   

3.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2‐amino‐5‐(4‐aminophenyl)‐thiazole (AAPT), was synthesized. A series of novel polyimides were prepared by polycondensation of AAPT with various aromatic dianhydrides by one‐step polyimidation process. The synthesized polyimides had inherent viscosity values of 0.36–0.69 dL/g and were easily dissolved in highly dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal and thermo‐oxidative stability with the glass transition temperatures (Tg) of 276.7–346.1°C, the temperature at 5% weight loss of 451–492°C in nitrogen and 422–440°C in air, as well as have outstanding mechanical properties with the tensile strengths of 94–122 MPa, elongations at breakage of 5–18%. These films also had dielectric constants of 3.12–3.38 at 10 MHz. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Five new poly(ether imides) have been prepared on reaction with oxydiphthalic anhydride (ODA) with five different diamines: 1,4‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 1,3‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) benzene, 2,6‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(p‐aminophenoxy‐2′‐trifluoromethyl benzyl) thiophene. Synthesized polymers showed good solubility in different organic solvents. The polyimide films have low water absorption of 0.3–0.7%, low dielectric constants of 2.82–3.19 at 1 MHz, and high optical transparency at 500 nm (>73%). These polyimides showed very high thermal stability with decomposition temperatures (5% weight loss) up to 531°C in air and good isothermal stability; only 0.4% weight loss occurred at 315°C after 5 h. Transparent thin films of these polyimides exhibited tensile strength up to 147 MPa, a modulus of elasticity up to 2.51 GPa and elongation at break up to 30% depending upon the repeating unit structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 821–832, 2004  相似文献   

6.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

7.
Two series of cardo polyimides were prepared from 1,4‐bis(4‐fluorophthalimide)cyclohexane with different trans/cis ratios and phenolphthalein/o‐cresolphthalein via aromatic nucleophilic substitution reaction. The inherent viscosities of the synthesized polymers were found to be 0.55–0.66 dL g?1 in N,N′‐dimethylacetamide. The cardo polyimides showed excellent solubility in organic solvents, high glass transition temperatures (Tg) of 275–312 °C and moderate thermal stability with 5% weight loss temperatures (Td5%) of 415–441 °C in nitrogen and 370–436 °C in air. The polyimide films exhibited high optical transparency with cut‐off wavelengths of 350–355 nm and moderate mechanical properties. The different properties of the polymers caused by trans and cis configurations of 1,4‐diaminocyclohexane were also investigated. It was found that with an increasing content of trans configuration of 1,4‐diaminocyclohexane in the polyimide backbone, Tg of the polyimides increased as well as Td5%, while the solubility gradually decreased. The polyimide films had good optical transparency regardless of trans/cis configuration. © 2018 Society of Chemical Industry  相似文献   

8.
Polyetherimides and copolymers have been synthesized in one pot from bis(chlorophthalimide), dichlorodiphenylsulfone, and bisphenolate using diphenylsulfone as the solvent. The inherent viscosities of the obtained polyimides are in the range of 0.32–0.72 dL/g, and the structures of polyimides were confirmed by IR and elemental analyses. All of the polyimides have good solubility in common organic solvents. The 5% weight‐loss temperatures of the polyimides were 429–507°C in air. The glass transition temperatures (Tg) of 4,4′‐(9‐fluorenylidene) diphenol‐based polyimides are in the range of 253–268°C. The Tg of bisphenol A‐based polyimides is in the range of 198–204°C, while the Tg change inconspicuously when the ratios of diphenylsulfone increase. The wide‐angle X‐ray diffraction showed that all polyimides prepared are amorphous. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4584–4588, 2006  相似文献   

9.
Homopolymers and copolymers of poly(arylene ether nitrile) (PAEN)‐bearing pendant xanthene groups were prepared by the nucleophilic substitution reaction of 2,6‐difluorobenzonitrile with 9,9‐bis(4‐hydroxyphenyl)xanthene (BHPX) and with various molar proportions of BHPX to hydroquinone (100/0 to 40/60) with N‐methyl‐2‐pyrrolidone (NMP) as a solvent in the presence of anhydrous potassium carbonate. These polymers had inherent viscosities between 0.61 and 1.08 dL/g, and their weight‐average molecular weights and number‐average molecular weights were in the ranges 34,200–40,800 and 17,800–20,200, respectively. All of the PAENs were amorphous and were soluble in dipolar aprotic solvents, including NMP, N,N‐dimethylformamide, and N,N‐dimethylacetamide and even in tetrahydrofuran and chloroform at room temperature. The resulting polymers showed glass‐transition temperatures (Tg's) between 220 and 257°C, and the Tg values of the copolymers were found to increase with increasing BHPX unit content in the polymer. Thermogravimetric studies showed that all of the polymers were stable up to 422°C with 10% weight loss temperatures ranging from 467 to 483°C and char yields of 54–64% at 700°C in nitrogen. All of the new PAENs could be cast into transparent, strong, and flexible films with tensile strengths of 106–123 MPa, elongations at break of 13–17%, and tensile moduli of 3.2–3.7 GPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A new diacetamido‐diamine monomer, N′‐[7‐(acetyl‐4‐aminoanilino)‐9,9‐dioctylflouren‐2‐yl]‐N′‐4‐aminophenyl) acetamide (ADOAc), with flourene‐based structure was prepared from the reaction of 4‐aminoacetanillide with 2,7‐dibromo‐9,9‐dioctylfluorene in the presence of 10 mol % CuI, 20 mol % N,N′‐dimethylethylene diamine as catalyst and K2CO3 as base. Two new flourene‐ring containing polyimides were prepared from the reaction of ADOAc with aromatic dianhydrides such as pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) via chemical imidization of poly(amic acid). The new diamine and the related polyimides were characterized by using conventional methods such as FT‐IR, NMR, and elemental analysis. The polyimides obtained from the reaction of ADOAc with PMDA (PIa) and of ADOAc with BTDA (PIb) had inherent viscosity of 0.49 and 0.58 dL/g respectively, and showed excellent solubility in a variety of organic solvents. The polyimides of PIa and PIb showed excellent thermal stability with 10% weight loss in nitrogen atmosphere at temperatures of 418°C and 407°C and Tg of 172°C and 167°C, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A new kind of pyridine‐containing aromatic diamine monomer, 4‐phenyl‐2,6‐bis[4‐(4‐aminophenoxy)phenyl]‐pyridine (PAPP), was successfully synthesized by a modified chichibabin reaction of benzaldehyde and a substituted acetophenone, 4‐(4‐nitrophenoxy)‐acetophenone (NPAP), followed by a reduction of the resulting dinitro compound 4‐phenyl‐2,6‐bis[4‐(4‐nitrophenoxy)phenyl]‐pyridine (PNPP) with Pd/C and hydrazine monohydrate. The aromatic diamine was employed to synthesize a series of new pyridine‐containing polyimides by polycondensation with various aromatic dianhydrides in N‐methy‐2‐pyrrolidone (NMP) via the conventional two‐step method, i.e., ring‐opening polycondensation forming the poly (amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.79–1.13 dL/g, and most of them were soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), NMP, and tetrahydrofuran (THF), etc. Meanwhile, strong and flexible polyimide films were obtained, which had good thermal stability, with the glass transition temperatures (Tg) of 268–338°C and the temperature at 5% weight loss of 521–548°C in air atmosphere, as well as outstanding mechanical properties with tensile strengths of 89.2–112.1 MPa and elongations at break of 9.5–15.4%. The polyimides also were found to possess low dielectric constants ranging from 2.53 to 3.11. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 212–219, 2007  相似文献   

12.
A series all‐aromatic poly(esterimide)s with different molar ratios of N‐(3′‐hydroxyphenyl)‐trimellitimide (IM) and 4‐hydroxybenzoic acid (HBA) (IM/HBA = 0.3/0.7 and 0.7/0.3) was prepared with the aim to design flexible high Tg films. Melt‐pressed films, either from high molecular weight polymer or cured phenylethynyl precursor oligomers, exhibit Tgs in the range of 200 °C to 242 °C and are brittle. After a thermal stretching procedure, the films became remarkably flexible and very easy to handle. In addition, the thermally stretched 3‐IM/7‐HBA and 7‐IM/3‐HBA films show tensile strengths of 108 MPa and 169 MPa, respectively. Thermal treatment increased the Tg of 3‐IM/7‐HBA from 205 °C to 248 °C, whereas the Tg of 7‐IM/3‐HBA increased from 230 °C to 260 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 133, 44774.  相似文献   

13.
A novel diamine, 1,4‐bis [3‐oxy‐(N‐aminophthalimide)] benzene (BOAPIB), was synthesized from 1,4‐bis [3‐oxy‐(N‐phenylphthalimide)] benzene and hydrazine. Its structure was determined via IR, 1H NMR, and elemental analysis. A series of five‐member ring, hydrazine‐based polyimides were prepared from this diamine and various aromatic dianhydrides via one‐step polycondensation in p‐chlorophenol. The inherent viscosities of these polyimides were in the range of 0.17–0.61 dL/g. These polymers were soluble in polar aprotic solvents and phenols at room temperature. Thermogravimetric analysis (TGA) showed that the 5% weight‐loss temperatures of the polyimides were near 450°C in air and 500°C in nitrogen. Dynamic mechanical thermal analysis (DMTA) indicated that the glass‐transition temperatures (Tgs) of these polymers were in the range of 265–360°C. The wide‐angle X‐ray diffraction showed that all the polyimides were amorphous. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A new trifluoromethylated bis(ether amine) monomer, 9,9‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]xanthene (BATFPX), was prepared through the nucleophilic aromatic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of novel fluorinated polyimides were synthesized from BATFPX with various commercially available aromatic tetracarboxylic dianhydrides by one‐step polycondensation in m‐cresol. The resulting polyimides were readily soluble in many organic solvents such as N,N‐dimethylacetamide and tetrahydrofuran, and afforded transparent, flexible and strong films with low moisture absorption (0.28–0.51%), low dielectric constant (2.85–3.26 at 1 MHz) and good optical transparency with UV‐visible absorption cut‐off wavelengths at 352–410 nm. All the polyimides were amorphous and exhibited high thermal stability, with glass transition temperatures of 282–330 °C, 5% weight loss temperatures above 520 °C in nitrogen or air and char yields higher than 55% at 800 °C in nitrogen. Also, these polyimides had good mechanical properties with tensile strengths of 93–118 MPa, elongations at break of 9–16% and initial moduli of 2.07–2.58 GPa. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
In order to better understand the design rules of epoxy–phenol thermosets we will report on the chemistry and (thermo)mechanical properties of cured epoxy–phenol thermoset films. Ortho-, meta- and para-isomers of dihydroxybenzene (DHB) were reacted with the diglycidyl ether of bisphenol A (DGEBA) in the presence of an acid catalyst or triphenylphosphine (PPh3). The glass transition temperatures (Tg) of the cross-linked films decreases in the order of meta- (Tg = 115°C) > ortho- (Tg = 102°C) > para-DHB (Tg = 96°C) as measured by differential scanning calorimetry. Uniaxial tensile testing of cross-linked films showed excellent stress–strain behavior. The average ultimate strength values ranged from 65 to 82 MPa and the average values of the strain-at-break ranged from 4.8% to 6.9% at 25°C for all cross-linked films. When a PPh3 was used, the network properties were profoundly different. The base catalyzed thermoset of DGEBA and meta-DHB shows a Tg of 85°C, which is 30°C lower than the Tg of the acid-catalyzed analog. Tensile films appear to be more ductile, as they exhibit a strain-at-break of 20%. The results of this study confirm that simple dihydroxybenzene hardeners can be used to prepare cross-linked films with excellent thermomechanical properties.  相似文献   

16.
A novel trifluoromethyl-substituted bis(ether amine) monomer, 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane, was synthesized that led to a series of novel fluorinated polyimides via chemical imidization route when reacted with various commercially available aromatic tetracarboxylic dianhydrides. These polyimides were highly soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N -dimethylacetamide, and most of them could afford transparent, low-colored, and tough films. These polyimides exhibited glass-transition temperatures (T gs) of 227–269 °C and showed no significant decomposition below 500 °C under either nitrogen or air atmosphere. These polyimides had low dielectric constants of 2.87–3.17 at 10 kHz, low water uptake of 0.13%–0.58%, and an ultraviolet-visible absorption cutoff wavelength at 364–410 nm. For a comparative study, a series of analogous polyimides based on 1,1-bis[4-(4-aminophenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane were also prepared and characterized.  相似文献   

17.
A series of fluorinated polyamides was prepared directly by low‐temperature polycondensation of a new cardo diacid chloride, 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]xanthene (BCPX), with various diamines containing trifluoromethyl substituents in N,N‐dimethylacetamide (DMAc). Almost all polyamides showed excellent solubility in amide‐type solvents such as DMAc and could also be dissolved in pyridine, m‐cresol, and tetrahydrofuran. These polymers had inherent viscosities between 0.77 and 1.31 dL g?1, and their weight‐average molecular weights and number‐average molecular weights were in the range of 69,000–102,000 and 41,000–59,000, respectively. The resulting polymers showed glass transition temperatures between 240–258°C and 10% weight loss temperatures ranging from 484°C to 517°C and 410°C to 456°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 55%. All polymers were amorphous and could be cast into transparent, light‐colored, and flexible films with tensile strengths of 81–100 MPa, elongations at break of 8–12%, and tensile modulus of 1.6–2.1 GPa. These polymers had low‐dielectric constants of 3.34–3.65 (100 kHz), low‐moisture absorption in the range of 0.76–1.91%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 322–340 nm range. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A new aromatic diamine, 2,3‐bis(4‐(4‐amino‐2‐(trifluoromethyl) phenoxy)phenyl)naphtho[2,3‐f]quinoxaline‐7,12‐dione, was synthesized and fully characterized by using FTIR, 1H and 13C NMR, DEPT technique, and elemental analysis. A series of novel fluorescent anthraquinone‐quinoxaline containing polyamides (PAs) with inherent viscosities of 0.39–0.62 dL/g was prepared by direct polycondensation of the diamine with various dicarboxylic acids. These PAs were readily soluble in many polar aprotic organic solvents and could be solution‐cast into tough and flexible films. The PAs exhibited glass transition temperatures (Tg)s between 230 and 323°C, and 10% weight loss temperatures in the range of 362–433°C in N2. All of the PAs have fluorescence emission in solution and in solid state with maxima around 452–510 nm and with the quantum yields in the range of 6–17%. Also, cyclic voltammetry (CV) method was used to study the electrochemical oxidation behavior of these polymers at the surface of a modified multiwalled carbon nanotube (MWCNT)s glassy electrode. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A novel fluorinated bis(ether amine) monomer, 2,6‐bis(4‐amino‐2‐trifluoromethylphenoxy) naphthalene, was prepared through the nucleophilic aromatic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,6‐dihydroxynaphthalene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of novel trifluoromethylated polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal imidization of poly(amic acid) films. Most of the resulting polyimides were highly soluble in a variety of organic solvents and could afford transparent and tough films via solution casting. These polyimides exhibited moderately high glass transition temperatures (Tgs) of 249–311 °C, high thermal stability and good mechanical properties. Low moisture (0.19–0.85 %), low dielectric constants (2.49–3.59 at 10 kHz), and low color intensity were also observed. For a comparative study, a series of analogous polyimides based on 2,6‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
A series of new polyimides was prepared by reacting 2,6‐diaminopyridine with various aromatic dianhydrides in DMF in 1 : 1 mole ratio. All the resulting polyimides were readily soluble in organic solvents such as dimethylformamide, N,N‐dimethylacetamide, pyridine, m‐cresol, THF, etc. They also show good film‐forming ability. The polyimides exhibit good thermal stability and mechanical properties. The polymers have high Tg in the range of 252–296°C. The inherent viscosities of the polymers vary from 0.81 to 1.28 dL/g. A new class of bismaleimide and polyaspartimide as also synthesized. All the resulting polymer structures were characterized by FTIR and elemental analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1846–1853, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号