首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel epoxidized hydroxyl-terminated hyperbranched polymer (HPEEX) was formulated from epichlorohydrin and hydroxy-terminated hyperbranched polyester (HPE) based on trimethylol propane (TMP) and AB2 monomer. The obtained HPEEX was characterized with FT-IR, 1HNMR spectroscopy, TG, WAXD and GPC analysis. Results showed that the HPEEX was formulated as expected and its molecular weight and intrinsic viscosity were 3,789 g/mol and 3.96 mL/g, respectively. Meanwhile, the HPEEX was used as cross-linking agent in the preparation of waterborne epoxy resins. Performance of the HPEEX modified epoxy resin aqueous (EP-H) dispersions and their films was evaluated by various tests. It was found that with incorporation of hyperbranched polymer into the epoxy macromolecular chain, the EP-H films exhibited excellent hardness and water-proof performance: the hardness was as high as 96 (Shore A), and the contact angle of water on the surface of this kind of film was as high as 71°, resulting from branched structure, higher functionality of HPEEX, better cross-linking density and large number of hydrogen bonding in this epoxy system.  相似文献   

2.
A new monomer containing imide linkages, bis[4-(p-phenoxybenzoyl)-1,2-benzenedioyl]-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether (BCBDADPE) with diphenyl ether (DPE). Novel poly(aryl ether ketone)s containing imide linkages in the main chains (PEK-I) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of DPE and BPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–40 mol% BPBDADPE are semicrystalline and had increased T gs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) (70/30) due to the incorporation of imide linkages in the main chains. The polymers IV and V with 30–40 mol% BPBDADPE had not only high T gs of 182–183 °C, but also moderate T ms of 341–343 °C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

3.
New monomers, 4,4′-bis(4-phenoxybenzoyl)diphenyl (BPOBDP) and N,N′-bis(4-phenoxybenzoyl)-p-phenylenediamine (BPBPPD), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both diphenyl moiety and amide linkages in the main chains were prepared by electrophilic Friedel-Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBPPD, over a wide range of BPOBDP/BPBPPD molar ratios, in the presence of anhydrous AlCl3 and N-methylpyrrolidone (NMP) in 1,2-dichloroethane (DCE). All the polymers are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of the diphenyl moiety and amide linkages in the main chains. The polymers with 40-60 mol% BPBPPD had not only high Tgs of 183-189 °C, but also moderate Tms of 314-328 °C, which are very suitable for the melt processing. These polymers had tensile strengths of 107.4-111.5 MPa, Young's moduli of 2.20-2.45 GPa, and elongations at break of 11.3-13.5% and exhibited high thermal stability and good resistance to organic solvents.  相似文献   

4.
4,4′‐bis(Phenoxy)diphenyl sulfone (DPODPS) was synthesized by reaction of phenol with bis(4‐chlorophenyl) sulfone in tetramethylene sulfone in the presence of NaOH. Two poly(aryl ether sulfone ether ketone ketone)s (PESKKs) with high molecular weight were prepared by low temperature solution polycondensation of DPODPS and terephthaloyl chloride (TPC) or isophthaloyl chloride (IPC), respectively, in 1,2‐dichloroethane and in the presence of aluminum chloride (AlCl3) and N‐methylpyrrolidone (NMP). The resulting polymers were characterized by various analytical techniques, such as FT‐IR, 1H‐NMR, DSC, TG, and WAXD. The results show that the Tg and Td of PESEKKs are much higher, but its Tm is lower than those of PEKK. The other results indicate that PESEKKs exhibit excellent thermostabilities at 300 ± 10°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 489–493, 2005  相似文献   

5.
Poly(aryl ether ketone) copolymers possessing various compositions of 1,5-naphthalene and 1,4-phenylene moieties were prepared by the reaction of 4,4′-difluorobenzophenone with hydroquinone (HQ) and 1,5-dihydroxynaphthalene (DHN) in the presence of sodium carbonate and potassium carbonate in diphenyl sulfone. The synthesized copolymers were characterized by FT-IR spectra, differential scanning calorimetry, and thermogravimetric analysis. Thermal analyses of the copolymers showed that the glass transition temperature increased, while the melting temperature and 2.5% weight loss temperature decreased with increasing content of 1,5-naphthalene moieties. For the copolymers synthesized with the molar fraction of DHN in the dihydroxy monomers (DHN, HQ) being over 0.4, no cold crystallization temperature and melting temperature were detected, indicating that these copolymers are almost amorphous. The crystal structure of the copolymers with the molar fraction of DHN being not higher than 0.2 is rhombic, equal to poly(ether ether ketone).  相似文献   

6.
A series of poly(aryl ether ketone)s (PAEK) copolymers containing phthalazinone moieties were synthesized by modest polycondensation reaction from 4‐(4‐hydroxyl‐phenyl)‐(2H)‐phthalazin‐1‐one (DHPZ), hydroquinone (HQ), and 1,4‐bis(4‐fluorobenzoyl)benzene (BFBB). The Tg values of these copolymers ranged from 168 to 235°C, and the crystalline melting temperatures varied from 285 to 352°C. By introducing phthalazinone moieties into the main chain, the solubility of these copolymers was improved in some common polar organic solvents, such as chloroform (CHCl3), N‐methyl‐2‐pyrrolidinone (NMP), nitrobenzene (NB) and so on. The values of 5% weight loss temperatures were all higher than 510°C in nitrogen. The crystal structures of these copolymers were determined by wide‐angle X‐ray diffraction (WAXD), which revealed that they were semicrystalline in nature, and the crystal structure of these copolymers was orthorhombic, equal to poly(ether ether ketone ketone)s. As phthalazinone content in the backbone varied from 0 to 40 mol % (mole percent), the cell parameters of these copolymers including the a, b, and c axes lengths ranged from 7.76 to 7.99 Å, 6.00 to 6.14 Å, and 10.10 to 10.19 Å, respectively. The degree of crystallinity (via differential scanning calorimetry) decreased from 37.70% to 16.14% simultaneously. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1744–1753, 2007  相似文献   

7.
Wanwan Li  Zhihao Shen  Qifeng Zhou 《Polymer》2008,49(19):4080-4086
A novel phenylethynyl-contained bisphenol monomer, (2,5-dihydroxyphenyl)(4-(2-phenylethynyl)phenyl)methanone (PEBP), has been synthesized and characterized. The resultant monomer was copolymerized with hydroquinone and 4,4′-difluorobenzophenone by means of an aromatic nucleophilic substitution reaction to provide a series of crosslinkable poly(aryl ether ketone)s containing pendant phenylethynyl moieties (PE-PAEKs). The solubility of PE-PAEKs tended to be improved with the increase in PEBP content. Wide-angle X-ray diffraction (WAXD) results showed that introduction of bulky pendant groups into molecular chains led to decrease in crystallinity. PE-PAEKs were successfully cured upon heating. Dynamic mechanical analysis (DMA) results indicated that the glass-transition temperature (Tg) of the cured PE-PAEKs was increased. Thermogravimetric analysis (TGA) results implied that the thermal stability of the cured PE-PAEKs was excellent.  相似文献   

8.
Three series of poly(aryl ether sulfone)s (PAESs) containing the phthalazinone moiety in the polymer backbone were synthesized by solution polycondensation of bis(4-chlorophenyl) sulfone with three commercial bisphenols and 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one. Bisphenol-A, hydroquinone, and bis(4-hydroxyphenyl) sulfone, or bisphenol-S, were selected as the commercial bisphenols for copolymerization. The synthesized polymers exhibited very high glass transition temperatures and excellent thermooxidative properties. They also showed superior mechanical properties and fair rheological properties. The introduction of relatively flexible moieties, such as benzene rings, onto the poly(phthalazinone ether sulfone) (PPES) chain led to a decrease in glass transition temperature with respect to the phthalazinone homopolymer. However, the processability of PPES was improved dramatically by the addition of these commercial bisphenols. The properties of synthesized PAESs can be tailored by changing the molar ratios of bisphenols to phthalazinone monomer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:137–143, 1998  相似文献   

9.
Several novel aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkages with inherent viscosities of 0.62–0.65 dL/g were prepared from 2‐methyldiphenylether and 3‐methyldiphenylether with 4,4′‐bis(4‐chloroformylphenoxy)diphenylsulfone and 4,4′‐bis (3‐chloroformylphenoxy)diphenylsulfone by electrophilic Friedel–Crafts acylation in the presence of N,N‐dimethylformamide with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane. These polymers, having weight‐average molecular weights in the range of 57,000–71,000, were all amorphous and showed high glass‐transition temperatures ranging from 160.5 to 167°C, excellent thermal stability at temperatures over 450°C in air or nitrogen, high char yields of 52–57% in nitrogen, and good solubility in CHCl3 and polar solvents such as N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 84.6–90.4 MPa, Young's moduli of 2.33–2.71 GPa, and elongations at break of 26.1–27.4%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A new diamine monomer, 1,5-bis[4-(4-aminophenoxy)]benzoyl-2,6-dimethoxynaphthalene, was synthesized via a Friedel–Crafts acylation reaction followed by an aromatic nucleophilic substitution reaction. Six ether–ketone linked polymers, named as poly(ether ketone azomethane)s and poly(ether ketone imide)s, were successfully prepared through the polycondensations of the diamine monomer with dialdehydes and dianhydrides, respectively. These naphthylated polymers exhibited high T g values (142–288 °C), due to their bulky and rigid chemical structure. Meanwhile, they showed good thermal stability and improved solubility. Typically, some of them were casted into thin flexible film and showed high moduli.  相似文献   

11.
A series of azobenzene functionalized poly(arylene ether sulfone)s (azo-PAESs) has been synthesized via nucleophilic aromatic substitution polycondensation, and azobenzene chromophores could be introduced into the polymer main chains by copolymerization from azo-monomers. These main chain type azo-PAESs have high glass transition temperatures and good thermal stability. Exposed to an interference pattern laser beam, spin-coated films of the azo-PAESs can form clear and stable surface relief gratings (SRGs). These SRGs show increased thermal stabilities with the content of azo moieties and cannot be fully removed until the temperature increases to 300 °C for azo-PAESs with a content of azo segments above 50%.  相似文献   

12.
A series of new poly(arylene ether sulfone phenyl-s-triazine) copolymers containing phthalazinone moieties in the main chain (PPESPs) were prepared by a direct solution polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (HPPZ) with 2-phenyl-4,6-bi(4-fluorophenyl)-1,3,5-triazine (BFPT) and 4,4′-dichlorodiphenyl sulfone (DCS). Model reactions monitored by HPLC indicated that BFPT had slightly higher reactivity than DCS in nucleophilic displacement reactions. The obtained random copolymers were characterized by FTIR, NMR, elemental analysis and GPC. The presence of sulfone and phthalazinone in the polymer chain results in an improvement in the solubility of poly(arylene ether phenyl-s-triazine)s in common organic solvents, such as N-methylpyrrolidone, N,N-dimethyl acetamide (DMAc), chloroform, sulfolane and pyridine. Thermal analysis reveal that the copolymers exhibit high glass transition temperatures (Tgs) ranging from 271–300 °C, and excellent thermal stability associated with decomposition temperatures for 5% mass-loss exceeding 503 °C. All copolymers are amorphous except PPESP28 as evidenced by WAXD. Their Tgs and solubility increase with an increase in sulfone content in the polymer backbone, while the crystallinity and overall thermal stability appear to decrease. This kind of phthalazinone-based copoly(arylene ether sulfone phenyl-s-triazine)s may be considered a good candidate for using as high-performance structural materials.  相似文献   

13.
A new monomer, 1,4‐bis(4‐phenoxybenzoyl)naphthalene (BPOBN), was conveniently synthesized via a simple synthetic procedure from readily available materials. A series of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4‐naphthylene moieties were prepared by the Friedel‐Crafts acylation solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of BPOBN and 4,4′‐diphenoxybenzophenone (DPOBPN), over a wide range of BPOBN/DPOBPN molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone in 1,2‐dichloroethane. The copolymers with 10–40% BPOBN are semicrystalline and had remarkably increased Tgs over the conventional PEEK and PEKK due to the incorporation of 1,4‐naphthylene moieties in the main chains. The copolymers with 30–40 mol% BPOBN had not only high Tgs of 176–177°C, but also moderate Tms of 332–338°C, which are suitable for the melt processing. These polymers had tensile strengths of 101.5–104.7 MPa, Young's moduli of 2.49–2.65 GPa, and elongations at break of 13.3–15.7% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 56:566–572, 2016. © 2016 Society of Plastics Engineers  相似文献   

14.
A series of novel fluorinated poly(aryl ether)s containing phthalazinone moieties (FPPEs) have been prepared by a modified synthetic procedure for optical waveguide applications. The obtained random copolymers exhibited excellent solubility in polar organic solvents, high glass transition temperatures (Tgs: 185-269 °C), good thermal stabilities (the temperatures of 1% weight loss: 487-510 °C) and good optical properties. By adjusting the feed ratio of the reactants, the refractive indices of TE and TM modes (at 1550 nm) could be well controlled in the range of 1.575-1.498 and 1.552-1.484, respectively. The optical losses of the FPPEs exhibited relatively low values (less than 0.27 dB/cm at 1310 nm). Additionally, the thermo-optic coefficient (dn/dT) values of the FPPEs at 1310 nm and 1550 nm (TE mode) ranged from −0.97 × 10−4 °C to −1.33 × 10−4 °C and from −0.96 × 10−4 °C to −1.29 × 10−4 °C, respectively.  相似文献   

15.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

16.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKs),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征,研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚玻璃化转变温度(Tg)和热分解温度(Td)影响不大,熔融温度(Tm)和结晶则逐渐降低,但仍保持良好的耐热性,溶解性等到很大改善。  相似文献   

17.
在无水AlCl3及N-甲基吡咯烷酮(NMP)/1,2-二氯乙烷(DCE)复合溶剂的存在下,将含砜基芳二醚类单体与含偶氮苯结构芳二甲酰氯进行低温付-克缩聚反应,合成了一类新型含偶氮结构聚芳醚砜醚酮酮树脂。用IR、TG、WAXD及元素分析等技术进行了结构表征和性能测试。结果表明:所合成的聚合物树脂具有预期结构且为非晶态聚合物;在N2气氛中质量损失5%的温度(Td)分别为445~463℃;聚合物除了能在浓硫酸、CF3COOH/CHCl3等强极性质子型溶剂中溶解外,还能溶解于N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等强极性非质子型溶剂中,也能在普通溶剂,如氯仿(CHCl3)、1,2-二氯乙烷(DCE)、四氢呋喃(THF)等中溶解。  相似文献   

18.
A new indane containing unsymmetrical diamine monomer ( 3 ) was synthesized. This diamine monomer leads to a number of novel semifluorinated poly (ether imide)s when reacted with different commercially available dianhydrides like benzene‐1,2,4,5‐tetracarboxylic dianhydride (PMDA), benzophenone‐3,3′, 4,4′‐tetracarboxylic dianhydride (BTDA), 4,4′‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐(4,4′‐Isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) by thermal imidization route. All the poly(ether imide)s showed excellent solubility in several organic solvents such as N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), chloroform (CHCl3) and dichloromethane (DCM) at room temperature. These light yellow poly (ether imide)s showed very low water absorption (0.19–0.30%) and very good optical transparency. Wide angle X‐ray diffraction measurements revealed that these polymers were amorphous in nature. The polymers exhibited high thermal stability up to 526°C in nitrogen with 5% weight loss, and high glass transition temperature up to 265°C. The polymers exhibited high tensile strength up to 85 MPa, modulus up to 2.5 GPa and elongation at break up to 38%, depending on the exact polymer structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Poly(ether ether ketone ketone)-poly(ether sulfone) (PEEKK/PES) block copolymers were prepared from the corresponding oligomers via a nucleophilic aromatic substitution reaction, and the M n of the PEEKK segment was fixed at 12,000, while the M n's of the PES segment ranged from 250 to 12,680. The different properties of the copolymers were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). The results showed that the relationship between Tg and compositions of copolymers approximately followed the formula 1/Tg = W2/Tg2. The PES content and the segment length of the copolymers had a significant influence on their melting points and crystallization behavior. The thermal properties and dynamic mechanical behavior of the copolymers were also studied. In the study of isothermal crystallization, the copolymers have the same nucleation mechanism and crystal growth as that of pure PEEKK. Owing to the introduction of the PES segment into the PEEKK main chain, it increases the free energy which forms the critical crystal nucleus and produces a resistant action to the whole crystallization process of the PEEKK segment. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
A series of poly(ether ketone sulfone)s were synthesized from 1,4-di(fluorobenzoyl)cyclohexane, difluorodiphenylsulfone and bisphenol A. These polymers were characterized by NMR, IR, SEC, DSC, TGA, tensile tests and DMA. The results from NMR, IR, and SEC indicated that essentially no side reactions, such as cross-linking, associated with enolate chemistry take place during the polymerizations although cis/trans stereochemistry inversion was observed. Comparison of the Tgs of the polymers with 1,4-cyclohexyl units to those of the terephthaloyl analogs suggested that the trans-1,4-cyclohexyl imparts slightly higher Tg than the terephthaloyl control. Tensile tests and DMA revealed that polymers with 1,4-cyclohexyl have essentially the same storage moduli as the corresponding aromatic analogs despite the inherent flexibility of the cyclohexyl unit. DMA also showed that the cyclohexyl unit imparts a larger magnitude of sub-Tg motion than terephthaloyl unit while maintaining high modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号