首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we prepared pH‐sensitive hydrogel microspheres by means of atom transfer radical polymerization of hydroxyethyl methacrylate and 4‐vinylpyridine in inverse emulsion, using poly (ethylene glycol) dimethylacrylate as a crosslinker. One‐factor experiment was used to optimize conditions of preparing microspheres and the resulting conditions were presented. The microspheres were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, scanning electron microscopy, and so forth. The swelling behavior of the as‐prepared microspheres was studied by a classic gravimetric method. Afterward, daidzein was used as a model drug and related release mechanism was investigated. The diffusional coefficients and the corresponding kinetic parameters of chosen mathematical models for fitting drug release were calculated, which indicated drug release accorded with anomalous (non‐Fickian) diffusion mechanism. POLYM. ENG. SCI., 55:2775–2782, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
Protein conjugates consisting of hydroxyethyl methacrylate and acrylic acid monomers in the presence of bovine serum albumin (BSA) were prepared by gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The study parameter was the BSA content in the as‐prepared conjugates. Polymers were characterized with FTIR, scanning electron microscopy (SEM), and swelling studies. The polymerization reaction caused the rearrangement of the BSA carbonyl hydrogen bonding and finally led to the modification of the BSA secondary structure as proved by FTIR. SEM proved that the prepared conjugates matrices are porous, with a three‐dimensional interconnected microstructure. The swelling kinetics of the hydrogels and the release dynamics of an anticancer model drug (flutamide) have been studied. High equilibrium swelling values, up to 1550%, could be observed and were correlated with the increase in pH, temperature, and BSA content. The mechanism of swelling changed from Fickian to non‐Fickian by reducing the acidity of the medium. This study proved that there is a direct relationship between the protein content in the conjugates and both the loaded and the released drug. These pH responsive conjugates may be exploited for the delivery of flutamide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
An ionic liquid monomer, 3‐methyl‐1‐[2‐(2‐methyl‐acryloxy)‐ethyl]‐imidazolium chloride, was synthesized through the quaternization of N‐methylimidazole and 2‐chloroethyl methacrylate. This ionic liquid monomer intercalated into the montmorillonite layers and subsequently copolymerized with methacrylic acid. The organic–inorganic composite was characterized by FTIR, XRD, SEM, and EDX to study their structure and properties. Naproxen as a model drug was entrapped in these pH‐sensitive positively charged nano carriers and the in vitro release profiles were established separately in both enzyme‐free simulated gastric and intestinal fluids (SGF, pH 1) and (SIF, pH 7.4) respectively. It was observed that the drug release percentages in SIF were higher; hence the prepared nanocomposite could be considered as a suitable carrier for colon specific drug delivery. POLYM. COMPOS., 182–187, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Novel pH‐sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were prepared in two steps. Chitosan was first ionically crosslinked with itaconic acid, after which a free radical polymerization and crosslinking of the chitosan/itaconic acid network was performed by adding methacrylic acid and a crosslinker in order to achieve better mechanical properties and tunable swelling. The samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, dynamic mechanical analysis and the swelling ratios of the hydrogels at various pH values (2.0–8.0). The hydrogel composition is found to have a great impact on the hydrogel structure, mechanical and thermal properties, morphology and swelling kinetics. The highly porous morphology of the gels is probably connected with the bulky chitosan/itaconic acid network which reduces the degree of crosslinking in the second step of the synthesis due to steric hindrances. The gels demonstrate substantial change in buffer absorbency with change of pH, low for acid buffers and the higher for pH values above 6 where the swelling is considerably slow, thus suggesting their strong candidature for use as oral drug‐delivery systems in the lower parts of the gastrointestinal tract and for drugs that require longer release times. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Spherical crosslinked beads using chitosan, glycine and glutaraldehyde were prepared for controlled release formulations. Structural investigation of the beads was made with IR analysis. Morphological study of the beads was carried out by scanning electron microscopy. The swelling behaviour of the beads was monitored as a function of time in solutions of different pH. The release experiments were performed using thiamine hydrochloride (Thi‐HCl) as a model drug. These preliminary results suggest the possibility of modifying the formulations to obtain the desired controlled release of drug in an oral sustained delivery system. © 2000 Society of Chemical Industry  相似文献   

6.
As drug delivery systems, stimuli‐responsive polymer micelles hold great potential in cancer chemotherapeutics to improve therapeutic efficiency and eliminate organism adverse effects. Here, pH‐sensitive polymeric micelles based on dextran‐g‐benzimidazole were designed and used for intracellular anticancer drug delivery. The anticancer drug doxorubicin (DOX) was effectively loaded into the micelles via hydrophobic interactions. In vitro release studies demonstrated that the release of loaded DOX was greater and faster under acid conditions such as in carcinomatous areas (pH < 6.8) than in physiological conditions (pH 7.4). MTT assays and flow cytometric analyses showed that DOX‐loaded micelles had higher cellular proliferation inhibition towards HeLa and HepG2 cells than pH‐insensitive controls. These pH‐sensitive micelles with significant efficiency for intracellular drug release will be beneficial to the future of in vivo biomedical applications. © 2014 Society of Chemical Industry  相似文献   

7.
A pH‐sensitive drug targeting system for solid tumors was established based on N‐isopropylacrylamide (NIPAAm) and chitosan conjugates. The mass ratio of NIPAAm and chitosan was adjusted to obtain super pH‐sensitive characteristic and the structure was studied by using Fourier transform infrared spectroscope to confirm the successful synthesis of the nanoparticles. The pH‐sensitive and drug release characteristics in vitro were studied as well. Human lung cancer cells A‐549 and human fibroblast were used to test the biocompatibility of blank and Podophyllotoxin (POD) loaded nanoparticles further to certificate the reliability of targeting acidic tumor extracellular pH. Results revealed that when charge ratio between NIPAAm and CS achieve 4:1(w/w), the drug‐loaded nanoparticles, which diameters ranged from 50 to 150 nm, exhibited super pH‐sensitive responses to tumor pH. Encapsulation and loading efficiencies were 63.7% and 2.4%, respectively. The cumulative release rate of POD, which significantly enhanced at pH 6.8 while decreased rapidly either below pH 6.5 or above pH 6.9 at 37°C. At pH 6.8, POD‐loaded nanoparticles showed cytotoxicity in MTT test and fluorescence microscopic study, comparable to that of free POD at the same POD concentrations, whereas at pH 7.4 there was little cytotoxicity at the tested concentration range. Thereby, the atoxic PNIPAAm‐g‐chitosan nanoparticle has the potentiality as a novel anticancer drugs carrier. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
The objectives of this study were to prepare films from submicron chitosan/Eudragit® L100‐55 polyelectrolyte complexes (CH/EL PEC) and to assess the influence of CH molecular weight and CH/EL mass ratio on their structure and drug‐release properties. The films were obtained by a simple, environmentally friendly, casting/solvent evaporation method and the verapamil hydrochloride (VH) was used as model drug. Submicron size, narrow size distribution, and acceptable stability of CH/EL PECs were confirmed by DLS and laser Doppler microelectrophoresis. SEM analysis revealed nonporous inner structure and flat surface of the films. Interactions between comprising polymers and formation of CH/EL PEC were established by DSC and FT‐IR spectroscopy. In vitro swelling and drug release studies revealed the pH sensitivity of the films, with burst drug release in acidic conditions (pH 1.2) and sustained release in phosphate buffers pH 5.8, 6.8, and 7.4. The slowest VH release was achieved from the films prepared from equal amounts of EL and CH of higher molecular weight, confirming the significance of the CH/EL ratio and CH molecular weight on their ability to sustain drug release. The obtained results suggested that presented, simple, and eco‐friendly preparation procedure can be used to obtain pH‐sensitive CH/EL PEC films with a promising potential as drug carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42583.  相似文献   

9.
Based on gelatin (Gltn) and acrylic acid (AAc), biodegradable pH‐sensitive hydrogel was prepared using gamma radiation as super clean source for polymerization and crosslinking. Incorporation of PAAc in the prepared hydrogel was confirmed by Fourier transform infrared spectroscopy (FTIR). The effect of PAAc content on the morphological structure of the prepared hydrogel swollen at pH 1, 5, and 7 was examined using scanning electron microscopy (SEM). The results showed the dependence of the porous structure of the prepared hydrogels on AAc content and the pH of the swelling medium. Swelling properties of gelatin/acrylic acid copolymer hydrogels with different AAc contents were investigated at different pH values. Swelling data showed that the prepared hydrogels possessed pronounced pH sensitivity. In vitro release studies were performed to evaluate the hydrogel potential as drug carrier using ketoprofen as a model drug. Experimental data showed that the release profile depends on both hydrogel composition and pH of the releasing medium. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Cylindrical hydrogels, composed of starch and poly(acrylic acid), were synthesized, and their swelling behavior was studied as a function of the pH of the medium. The gels underwent a sharp transition from Fickian swelling behavior (swelling exponent n = 0.30) to non‐Fickian swelling behavior (n = 0.96) as the pH of the swelling medium changed from 2.0 to 7.4. The hydrogels also underwent partial enzymatic degradation in an amylase‐containing medium of pH 7.4 at 37°C. The effects of the enzyme concentration in the swelling media, the amount of starch present in the gel, the initial water content, the degree of crosslinking, and the diameter of cylindrical hydrogels on the degradation behavior were studied. The degradation of the gels followed Michaelis–Menten kinetics, and the value of the Menten constant was 41.62 × 10?2. The gels exhibited minimum swelling in an acidic pH medium through the formation of a complex hydrogen‐bonded structure and underwent enzymatic degradation in a medium of pH 7.4 (i.e., simulating intestinal fluid) along with chain‐relaxation‐controlled swelling. Therefore, the gels have potential for colon‐targeted drug delivery. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3630–3643, 2004  相似文献   

11.
In order to obtain a pH‐sensitive delivery carrier for doxorubicin (DOX), DOX‐loaded polyurethane (PU·DOX) nanoparticles were readily prepared in water by electrostatic interactions between amphiphilic polyurethane with carboxyl pendent groups (PU‐COOH) and doxorubicin hydrochloride (DOX·HCl). The structures of the products obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, gel permeation chromatography, UV–visible spectroscopy, dynamic light scattering and transmission electron microscopy. The average hydrodynamic size of the PU·DOX nanoparticles was around 182 nm with negative surface charge (?1.1 mV) and a spherical or rodlike shape. PU·DOX nanoparticles had a higher drug‐loading content of 14.1 wt%. The in vitro drug release properties of PU·DOX nanoparticles were investigated at pH 4.0, 5.0 and 7.4, respectively. PU·DOX nanoparticles exhibited a good pH‐sensitive drug release property, but there was almost no release of DOX from PU·DOX nanoparticles at pH 7.4. The in vitro cellular uptake assay and the Cell Counting Kit‐8 assay demonstrated that PU·DOX nanoparticles had a higher level of cellular internalization and higher inhibitory effects on the proliferation of human breast cancer (MCF‐7) cells than pure DOX. The enhancement of the inhibition effects resulted from increasing apoptosis‐inducing effects on MCF‐7 cells, which was related to the enhancement of Bax expression and the reduction of Bcl‐2 expression confirmed by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay, real‐time polymerase chain reaction (PCR) assay and western blot assay. © 2018 Society of Chemical Industry  相似文献   

12.
New biodegradable pH‐responsive hydrogel beads based on chemically modified chitosan and sodium alginate were prepared and characterized for the controlled release study of protein drugs in the small intestine. The ionotropic gelation reaction was carried out under mild aqueous conditions, which should be appropriate for the retention of the biological activity of an uploaded protein drug. The equilibrium swelling studies were carried out for the hydrogel beads at 37°C in simulated gastric (SGF) and simulated intestinal (SIF) fluids. Bovine serum albumin (BSA), a model for protein drugs was entrapped in the hydrogels and the in vitro drug release profiles were established at 37°C in SGF and SIF. The preliminary investigation of the hydrogel beads prepared in this study showed high entrapment efficiency (up to 97%) and promising release profiles of BSA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A series of poly(N‐isopropylacrylamide‐co‐methacrylic acid‐co‐octadecyl acrylate) (poly(NIPAM‐co‐MAA‐co‐ODA)) with different monomer molar ratios was synthesized. Critical micelle concentration (CMC) of the polyelectrolyte solution was determined and the CMC increase with methacrylic acid content in the polyelectrolyte. The phase behaviors of the polyelectrolyte solution were studied, and the effects of various factors on the phase transition were discussed. The experimental results indicate that the lower critical solution temperature and the phase transition pH depend on the monomer molar ratio in the polyelectrolyte. Effect of polyelectrolyte concentration on phase transition pH was studied, and results shown that the phase‐transition pH is independent of the polyelectrolyte concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
There have been many attempts to use anionic hydrogels as oral protein delivery carriers because of their pH‐responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid‐co‐methacryloxyethyl glucoside) and poly(methacrylic acid‐g‐ethylene glycol) hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation Mt/M = ktn (where Mt is the mass of water absorbed at time t and M is the mass of water absorbed at equilibrium) was used to calculate the exponent (n) describing the Fickian or non‐Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation‐controlled in a swelling medium of pH 7.0, which was higher than pKa of the gels. The experimental results of the time‐dependent swelling behaviors of the gels were analyzed with several mathematical models. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1606–1613, 2003  相似文献   

15.
Hydrogels were synthesized from poultry feather protein by crosslinking ethylene diamine tetraacetic dianhydride (EDTAD)‐modified feather protein isolate (FPI) with glutaraldehyde (Glu). Different molar ratios of EDTAD/FPI were used to obtain FPI of different degrees of acylate modification. Differential scanning calorimeter measurements of glass transition temperature suggested that hydrogel formation was based on the hydrogen bond between EDTAD‐modified FPI segments. The swelling properties of modified FPI hydrogel were investigated in deionized water and in solutions of different salt contents (i.e., ionic strengths) and pH. An optimal swelling ratio (SR) of 63 g/g was obtained when molar ratios of EDTAD/FPI and Glu/FPI were 0.12 and 0.008, respectively. SR decreased substantially with increase in ionic strength, and at a given ionic strength, SR increased with solution pH in 4.0 to 10.0 range. The water transport mechanism of the hydrogel was also pH dependent and was controlled by Fickian diffusion and polymer relaxation. At higher pH value, the water transport profile became more dependent on polymer relaxation than at lower pH. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
An optimized procedure was used to prepare erythromycin (EM)‐loaded pH‐sensitive glycidyl methacrylate derivatized dextran (dex‐GMA)/acrylic acid (AAc) nanoparticles. The size distribution and drug release profile at different pH demonstrated that poly(dex‐GMA/AAc) nanoparticles possessed pH‐sensitivity. At pH 1.2, the mean diameter of nanoparticles was about 60 nm. While at pH 7.4 it increased approximately to 250 nm. The release of EM was about 7% of initial loading after 2 h at pH 1.2. However, at pH 7.4 it reached to 17.8%, 30.9% after 2 and 6 h, respectively. The results demonstrated that poly(dex‐GMA/AAc) nanoparticles could release EM slightly while passing through acerbic stomach, whereas in the alkaline intestine the drug is released considerably. The prepared nanoparticles were partially degradable and also had satisfactory biocompatibility. This study suggests that the poly(dex‐GMA/AAc) nanoparticles are potential colon‐specific targeting carriers, which can keep promising pharmaceutical dosage form of EM. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
Polyanion/gelatin complexes including poly(methacrylic acid) (PMAA)/gelatin, poly(acrylic acid) (PAA)/gelatin, and heparin/gelatin are investigated as pH‐sensitive gels for controlled protein release. Polyanions can interact with gelatin and form amorphous precipitates within a certain pH range, which is affected by the polyanion nature. The entrapment efficiency of model proteins (myoglobin, cytochrome c, and pepsin) into the complexes is rather high (>80%). By using a modified colloid titration that mixes a solution of gelatin and model proteins titrated with polyanion solution, myoglobin and cytochrome c are found to interact with polyanions by electrostatic forces at low pH, while pepsin either interacts with the polyanion when the pH is below its isoelectric point (IEP) or complexes with gelatin at a pH above IEPpepsin. At pH 7.4 all the complexes dissociate and proteins are rapidly released within a few hours. The complexes are stable and the proteins are retained within a certain pH range, which is related to the polyanion type (e.g., 5.0–2.0 for PMAA, 4.6–1.2 for PAA, and <4.3 for heparin). The three processes of complex formation, dissociation, and protein release have a good correlation. In addition, the protein release transition takes place within a rather narrow pH range (ca. 0.5 units) and the protein nature has little effect on the protein release profile. The high protein entrapment efficiency and good pH sensitivity of the protein release can be mainly attributed to the electrostatic attractive interactions between proteins and polyanion or gelatin. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1416–1425, 2001  相似文献   

18.
BACKGROUND: Based on the assembly strategy induced by host‐guest recognition in weak selective solvent, a kind of supramolecular nano‐micelles has been self‐organized from a water‐soluble diblock copolymer, poly(ethylene oxide)‐block‐poly(acrylic acid) (PEO‐b‐PAA), selectively included by ‐cyclodextrins (‐CDs). RESULTS: The spontaneous aggregation of rod‐like ‐CD/PEO‐based pseudo‐polyrotaxanes (pseudo‐PRs) drove the formation of square‐piece in aqueous media and thereafter evolved to spherical assemblies with or without hollow structure as time prolonged, which were stabilized by uncovered hydrophilic PAA segments. Such morphological evolvement attributed to hydrogen bonding between ··CCOOH in PAA and ··COH in ‐CD. However, when alkaline media was used to inhibit hydrogen bonding by ionizing ··CCOOH, the assemblies were only uniform spheres of ca. 100 nm. Meanwhile, the order stacking of PR rods became the basic building units all the time. Herein, the supramolecular PRs contributed to temperature‐response character, namely the formation of assemblies is reversible stimulated with temperature changes. Additionally, the inhibition of deceasing pH to the ionization of free PAA segments made assemblies fuse as microspheres. CONCLUSION: Such pH‐ and temperature‐sensitivity as well as the biocompatibility of components and water as media make a great potential of such nano‐particles as the biomedical materials with controlled‐release function. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
For a first step in the development of an intelligent delivery system for a nonapeptide as an α‐MSH antagonist, pH‐responsive P(MAA‐co‐EGMA) hydrogel microparticles were prepared and their feasibility as intelligent delivery carriers was evaluated. There was a drastic change in the swelling ratio of P(MAA‐co‐EGMA) microparticles at a pH of around 5 and as the MAA amount in the hydrogel increased, the swelling ratio increased at a pH above 5. The loading efficiency of the nonapeptide at pH 7 increased with the amount of Methacrylic acid (MAA) in the hydrogel and at pH 2, where the electrostatic attraction was greatest, a high loading efficiency was not obtained because of the low swelling ratio of the hydrogel. The P(MAA‐co‐EGMA) microparticles demonstrated a pH‐sensitive release behavior for the nonapeptide. In addition, the P(MAA‐co‐EGMA) microparticles showed a protective ability for the nonapeptide and preserved the stability of the nonapeptide. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号