首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the synthesis of a new water‐soluble conjugated polymer, which interacts specifically with heavy metal ions such as lead and mercury. In order to produce such a material, the fluorescent properties of polythiophene, which constitutes the polymer backbone, were combined with the chelating capacity of meso‐2,3‐dimercaptosuccinic acid, which forms the side‐chain of the conjugated polymer. Thus, the new polymer acts as chemical complexing agent, the fluorescence of which is quenched in the presence of heavy metal ions. A possible explanation of the mechanism of such a variation is also discussed. The system presented is envisaged to be used as a sensor for heavy metal ions that appear as pollutants in the environment .  相似文献   

2.
《分离科学与技术》2012,47(5):961-977
Abstract

The metal recovery from red mud solution containing chelating agents such as nitriloacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), citric acid, and phosphoric acid were studied by using the Neosepta CMX and CMB cation exchange membranes in Donnan dialysis process. The stripping solution was 1.0 M HCl solution and no external potential field is applied. The efficiency of chelating agents on the recovery of metal ions through membranes was correlated with the flux data. It was observed that the removal and fluxes of metals were enhanced with citrate, EDTA and NTA chelating agents in contrast were decreased with phosphate complexing agent.  相似文献   

3.
A zwitterionic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane for resistance to bacteria and protein adsorption was fabricated by the atom transfer radical polymerization of sulfobetaine methacrylate (SBMA). The PVA‐co‐PE nanofiber membrane was first surface‐activated by α‐bromoisobutyryl bromide, and then, zwitterionic SBMA was initiated to polymerize onto the surface of nanofiber membrane. The chemical structures of the functionalized PVA‐co‐PE nanofiber membranes were confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The morphologies of the PVA‐co‐PE nanofiber membranes were characterized by scanning electron microscopy. The results show that the poly(sulfobetaine methacrylate) (PSBMA) was successfully grafted onto the PVA‐co‐PE nanofiber membrane, and the surface of the nanofiber membrane was more hydrophilic than that of the pristine membrane. Furthermore, the antibacterial adsorption properties and resistance to protein adsorption of the surface were investigated. This indicated that the PSBMA‐functionalized surface possessed good antibacterial adsorption activity and resistance to nonspecific protein adsorption. Therefore, this study afforded a convenient and promising method for preparing a new kind of soft and nonwoven dressing material with antibacterial adsorption and antifouling properties that has potential use in the medical field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44169.  相似文献   

4.
Four chelating resins containing triethylenetetramine side chains and/or thiol groups were made from macroreticular 2,3-epithiopropyl methacrylate, styrene–divinylbenzene (DVB), or methyl methacrylate–DVB copolymer beads, and then the resins bearing metal ions such as Ag+, Cu2+, and Zn2+ were made. The antibacterial activity of the resins bearing metal ions against Escherichia coli (E. coli) or Staphylococcus aureus (S. aureus) was investigated. The resins containing thiol groups showed the higher adsorption capacity for silver ions than for other metal ions. The resins, which contain both triethylenetetramine side chains and thiol groups, bearing silver ions (RE-TTA-Ag) exhibited high antibacterial activity against bacteria, especially E. coli, without the residual silver ions in water after contacting with bacteria. The activity of the RE-TTA-Ag did not decrease even after reusing several time. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In this study, antibacterial and electrically conductive polyacrylonitrile (PAN) fibers were prepared by one‐step reaction between Cu2+ and S2– ions without extra reducing agents. The copper sulfide layer was firmly adhered to PAN fibers with the help of nitrile groups from PAN fibers and chelating agent of ethylenediaminetetraacetic acid disodium salt. The copper sulfide layer was characterized by scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectrometry, X‐ray diffraction, Raman and X‐ray photoelectron spectroscopy. The results illustrated that a compact and uniform copper sulfide layer was coated on PAN fibers with 108 nm thickness, and it was proved to be a pure hexagonal phase of covellite structure. The average resistance of the resultant fibers was about 360 Ω/cm and the mass content of copper sulfide was about 13.3%. The antibacterial tests demonstrated that the resultant fibers exhibited excellent antibacterial properties with antibacterial efficiency of 99.99% against Staphylococcus aureus and 96.80% against Escherichia coli. Furthermore, the antibacterial activities and electrical conductivity still remain good after 30 cycles of standard washing, indicating their good durability when in use. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45496.  相似文献   

6.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

7.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

8.
This work reports the enhancement of the processing window and of the mechanical and thermal properties of biopolymer blends of polyamide 1010 (PA1010) and bio‐based high‐density polyethylene (bio‐HDPE) at 70/30 (w/w) achieved by means of natural additives. The overall performance of the binary blend melt‐mixed without additives was poor due to both the relatively low thermal stability of bio‐HDPE at the processing temperatures of PA1010, that is, 210–240 °C, and the lack of or poor miscibility between the two biopolymers. Gallic acid, a natural phenolic compound, was added at 0.8 parts per hundred resin (phr) of biopolymer blend to enhance the thermal stability of the green polyolefin and therefore enlarge the processing window of the binary blend. Maleinized linseed oil, a multi‐functionalized vegetable oil, was then incorporated at 5 phr to compatibilize the biopolymers and the performance of the blend was also compared with that of a conventional petroleum‐derived copolymer, namely poly[ethylene‐co‐(acrylic acid)]. The resultant biopolymer blends showed a marked enhancement in thermal stability and also improved toughness when both natural additives were combined. This work can potentially serve as a sound base study for the mechanical recycling of similar blends containing bio‐based but non‐biodegradable polymers. © 2019 Society of Chemical Industry  相似文献   

9.
A novel class of polymer–metal complexes was prepared by the condensation of a polymeric ligand with transition‐metal ions. The polymeric ligand was prepared by the addition polymerization of thiosemicarbazides with toluene 2,4‐diisocyanate in a 1 : 1 molar ratio. The polymeric ligand and its polymer–metal complexes were characterized by elemental analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, and 13C‐NMR and 1H‐NMR spectroscopy. The geometries of the central metal ions were determined by electronic spectra (UV–visible) and magnetic moment measurement. The antibacterial activities of all of the synthesized polymers were investigated against Bacillus subtilis and Staphylococcus aureus (Gram positive) and Escherichia coli and Salmonella typhi (Gram negative). These compounds showed excellent antibacterial activities against these bacteria with the spread plate method on agar plates, and the number of viable bacteria were counted after 24 h of incubation period at 37°C. The antibacterial activity results revealed that the Cu(II) chelated polyurea showed a higher antibacterial activity than the other metal‐chelated polyureas. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A biopolymer‐TiO2 composite membrane was prepared by blending of N‐[(2‐hydroxy‐3‐trimethylammonium) propyl] chloride chitosan and cellulose acetate with nano‐TiO2 particles as the introduced inorganic components. It was verified that the amino groups (? NH2) of chitosan (CTS) were partly grafted by stronger hydrophilic group ? according to the 1H‐nuclear magnetic resonance spectra of N‐[(2‐hydroxy‐3‐trimethylammonium) propyl] chloride chitosan and attenuated total reflectance Fourier transform infrared spectroscopy. The structure, microcosmic morphology, water flux, swelling properties, and thermal stability of the composite membranes were characterized. With the mass ratio of cellulose acetate to CTS being 50 wt %, the mole ratio of CTS to glycidyl trimethylammonium chloride being 1 : 1, and drying temperature being 60°C in 70% acetic acid, the formed biopolymer‐TiO2 composite membranes exhibited enhanced mechanical strength (84.29 MPa), lower swelling degree (101.36%), and improved antibacterial activity against Gram‐negative Escherichia coli (Rosetta and DH5α) and Gram‐positive Bacillus subtilis. The existence of nano‐TiO2 particles and the introduction of stronger cationic group synergistically improved the antibacterial properties of the biopolymer‐TiO2 composite membranes. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42732.  相似文献   

11.
A novel biopolymer‐based superabsorbent hydrogel was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen, in the presence of a crosslinking agent and a free radical initiator. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis reaction based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with three factors and four levels were chosen. The critical parameters that have been selected for this study are crosslinker (N,N′‐methylene bisacrylamide), initiator (potassium persulfate), and monomer (acrylic acid) concentration. From the analysis of variance of the test results, the most effective factor to control equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 500 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore, the sorption capacity of the hydrogel toward bivalent metal ions was evaluated. Therefore, the hydrogel may be considered as a candidate to develop as an efficient biopolymer‐based chelating hydrogel for water treatment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4878–4885, 2006  相似文献   

12.
Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNT‐COOH) and MWCNT‐graft‐poly(citric acid) (MWCNT‐g‐PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT‐g‐PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT‐g‐PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT‐g‐PCA hybrid materials (MWCNT‐g‐PCA‐EPN) and their application as nanocatalyst toward Heck reaction in different conditions was investigated. The catalytic activity of palladium ions supported by MWCNT‐g‐PCA hybrid materials (MWCNT‐g‐PCA‐PdCl2) toward Heck reactions is much more than for MWCNT‐g‐PCA‐EPN. Structure, characteristics and catalytic activity of synthesized systems was investigated using spectroscopy and microscopy methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Stimuli‐sensitive polymers are a type of smart polymers having the capability to change their configuration or properties under adequate stimuli as heat, pH, magnetic field, mechanical strength, among other. The aim of this work was to synthesize nanostructured polymers with antibacterial properties capable to change their retention properties of divalent metal ions by external stimuli (pH and ionic strength). For that, a polymerizable nanostructured crosslinker (PNC) based on silver nanoparticles (AgNPs) and acrylic acid was synthesized. Later, NPSS was synthesized by free‐radical polymerization, characterized by different analytical techniques and its retention properties of divalent ions (Cu2+, Fe2+, Mn2+, and Zn2+) were studied at different pHs and ionic strengths (5.0, 7.0, and 9.0; and 0.0, 0.5, and 1.5% NaCl, respectively). It was evidenced that AgNPs can be synthesized using acrylic acid as stabilizing agent, and later, be used for synthesis of NPSS by free‐radical polymerization. For NPSS, metal ion retention decreases as pH is increased; in addition, results suggest that the electrostatic interaction is not the only determining factor in the retention of ions. Other possible factors which would be affecting the retention are: water flow by swelling capacity and water flow by osmotic stress resulting of high salt concentration. NPSS showed antimicrobial activity against Escherichia coli and Staphylococcus aureus which was enhanced by incorporation of PNC based on AgNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46001.  相似文献   

14.
In this research, the structural features and optimal conditions for the synthesis of an alginate–CuO nanocomposite with the highest antibacterial activity were investigated. CuO nanoparticles (NPs) and the alginate biopolymer were synthesized chemically and biologically, respectively. Nine nanocomposite compounds were produced on the basis of the Taguchi method with different levels of CuO NPs and the alginate biopolymer nanocomposite with different stirring times. Fourier transform infrared spectroscopy, high‐resolution field emission scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy analysis confirmed the formation of the nanocomposites. The nanocomposite synthesized with 8 mg/mL copper oxide NPs and 2 mg/mL alginate biopolymer with 60 min of stirring time showed the highest antibacterial activity. The results of two colony forming units and disk‐diffusion methods indicated a stronger antibacterial activity of the alginate–CuO nanocomposite compared with those of its components. The alginate–CuO nanocomposite showed the potential ability to act as an antimicrobial agent against Gram‐negative and Gram‐positive bacteria. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45682.  相似文献   

15.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
This work describes the release of copper(II) ions from cellulose fibers, which have been chemically modified by periodate‐induced oxidation of cellulose, followed by covalent attachment of biopolymer chitosan. The release of copper(II) ions has been investigated in physiological fluid (PF) and protein solution (PS) both at 37°C. Fibers have demonstrated excellent antibacterial activity against E. coli. Finally, their borohydride‐induced reduction has yielded copper nanoparticle‐loaded fibers, with average diameter of particles, nearly 28.94 nm. The formation of copper nanoparticles has been established by surface plasmon resonance and FTIR spectroscopy. These fibers also show fair biocidal action against E. coli. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
New chelating agents were synthesized from long-chain amines and ethylenediaminetetraacetic acid (EDTA) monoanhydride which was prepared by partial hydrolysis of EDTA anhydride. The equivalent reactions between the chelating agents and several metal ions gave the corresponding 1:1 metal chelates in good yield. These chelates and the sodium salts of the chelating agents were found to have good surface active properties, especially dispersing power and emul-sifying power.  相似文献   

18.
Novel nanosized and microsized chitosan–Al2O3–Fe3O4 (CANF and CAMF, respectively) adsorbents were functionalized with ethylenediaminetetraacetic acid (EDTA) ligands and applied to the removal of Pb(II) ions. The prepared adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis, and their adsorption potentials were investigated with Pb(II) as a target metal under various experimental conditions. Our results show that the EDTA functionalization of CANF and CAMF increased their adsorption capacities about 31.5 and 38 times, respectively. The optimum dosage obtained was 1.0 g/L for both EDTA‐functionalized adsorbents, and the maximum adsorption took place at pH = 5.3. The kinetic results revealed that the adsorption obeyed the pseudo‐second‐order model and that the pore diffusion process played a key role in the adsorption kinetics. Also, the results of equilibrium isotherms indicate the good fit of the experimental data by the Langmuir isotherm model under the studied concentration and temperature ranges, and the adsorptions of Pb(II) ions from aqueous solution followed the monolayer coverage of the adsorbents. The maximum Pb(II)‐ion adsorption capacities of EDTA–CANF and EDTA–CAMF were 160 and 157 mg/g, respectively. These metal‐loaded adsorbents could be readily recovered from aqueous solution by magnetic separation and reused. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44360.  相似文献   

19.
This work describes initial efforts to incorporate affinity ligands within an environmentally responsive hydrogel. Metal affinity ligands were chosen as model affinity groups and thermally responsive N‐isopropyl acrylamide/acrylamide copolymers were used as the base hydrogels. The ? NH2 group of the acrylamide serves as a reactive group for functionalization with metal affinity ligands. The gels were synthesized by free radical polymerization and Cu2+ was bound to the gel via 1,4‐butanediol diglycidyl ether (BDE) as a linker and iminodiacetic acid (IDA) as a chelating ligand. The base acrylamide gels were also functionalized with metal affinity ligands to allow for comparison with thermally responsive affinity gels. The results show the effectiveness of this technique for both these types of gels, and an improved method to immobilize metal affinity groups on to thermally sensitive N‐isopropyl acrylamide gels was also developed. It was seen that the yields for the reaction with BDE decreased with increased reaction time in both kinds of gels, whereas reaction with IDA showed a decrease in yields with increase in temperature for N‐isoporpyl acrylamide gels and increase in yields for acrylamide gels. Further techniques were developed to overcome diffusional resistances and stresses in the thermally responsive N‐isopropyl acrylamide gels so as to improve the distribution of Cu2+ ions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
The effects of chelation on the transport of calcium and magnesium, both separately and in a variety of admixtures, in a controlled series of asymmetric cellulose acetate membranes were characterized. Ethylenediaminetetraacetic acid (EDTA) and ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) were used as chelating agents for the alkaline earth metal ions. Asymmetric cellulose acetate membranes annealed at 70°, 75°, and 85°C were studied. Chelation of each of these alkaline earth metals ions in aqueous solutions at pH 6, by either EDTA or EGTA, significantly increased the overall hyperfiltration rejections of these metals by all the membranes studied. The increase in rejection varied montonically with the fraction of metal ion complexed. The higher rejection of metal chelates, compared to the rejection of unbound metal ions, was considered to be the result of the significantly larger size of the chelated species. Calculations suggested that selective (or competitive) chelation took place at pH 6 in a mixture of calcium and magnesium ions in the presence of a stoichiometrically limiting amount of chelating agent. Calcium successfully competed for most of the available chelating agent in equimolar aqueous solutions of chelating agent, calcium, and magnesium. The calcium rejection was explained primarily in terms of the effects of chelation per se on the effective size of the formed complex even in feeds comprised of these ternary solute mixtures. The complexation reaction between magnesium and EGTA is, however, so unfavorable at pH 6 that the Mg2+ ion remains uncomplexed even in the presence of an equivalent amount of EGTA. The observed increased rejection of magnesium ions, therefore, in ternary systems was explained by electroneutrality criteria and by solute–membrane interactions involving the various calcium species and the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号