首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
张力系数是钢管张力减径工艺的关键参数。为了分析张力系数对钢管减径工艺的影响,首先给出了具体的钢管减径工艺张力系数和轧辊转速的关系,得出了10组不同张力系数下的轧辊转速和减径工艺参数。然后运用有限元软件ANSYS/LS-DYNA对这10组张力减径过程进行了数值模拟,分析了不同张力系数下的接触应力、壁厚、内六方程度等工艺参数。最后通过实验验证了模拟结果,得出合理的张力系数。结果对改善钢管张力减径工艺和提高钢管轧制成形质量具有参考价值。  相似文献   

2.
根据微张力减径机组轧制工艺,采用ANSYS/LS-DYNA大型通用有限元分析软件对无缝钢管的微张力减径过程进行了数值计算,得到了钢管经过各机架时的应力场、应变场、壁厚的分布规律,以及金属的变形状态。模拟结果能够较好地诠释钢管减径过程中出现的壁厚不均等现象,模拟结果与实际生产中钢管变形行为状态基本吻合。研究结果对于技术人员分析、制定和优化钢管减径工艺制度具有较好的实践指导意义。  相似文献   

3.
荒管壁厚和张力系数是张力减径工艺的重要参数,对成品钢管质量具有直接影响。针对20机架钢管张力减径过程建立热力耦合有限元模型,并选择9种不同壁厚的钢管进行数值模拟,得到了张力减径过程中金属的流动规律,研究讨论了钢管内多边形的形成机理,总结了荒管壁厚和张力系数对张力减径工艺的影响规律。  相似文献   

4.
根据微张力减径工艺,采用大型通用有限元分析软件ANSYS/LS-DYNA对厚壁微张力减径过程进行三维热力耦合数值计算,得到了钢管经过各个机架的应力场、应变场、温度场、壁厚分布及轧制力变化以及金属的不均匀变形状态。数值模拟的结果能够较好的反应钢管壁厚不均的成因,为分析产品缺陷,为减径工艺设计提供了指导。  相似文献   

5.
管材皮尔格两辊冷轧过程中的轧制力影响成品管材的尺寸精度、轧制模具寿命以及轧制过程的稳定性。本研究基于Neumann-Siebel轧制力计算方法,考虑了轧辊弹性变形和空减径对轧制力的影响,依据Hitchcook方程对其进行了修正,利用Matlab软件建立了皮尔格两辊冷轧过程中的轧制力计算模型,并以KPW25轧机轧制Zr-4合金管材的轧制过程为研究对象,通过实验验证了该模型的可靠性。以R6072锆合金管材轧制为例,通过该轧制力计算模型分析了孔型曲线、管坯壁厚、送进量和摩擦对轧制力的影响。结果表明:轧制力在空减径段缓慢增加,进入减径减壁段后迅速增加至峰值,之后缓慢降低;孔型曲线对轧制力的分布有显著影响,当孔型指数等于2.0时,轧制力分布最为合理;轧制力随管坯壁厚、送进量和摩擦力的增大而增加。  相似文献   

6.
李群 《钢管》2017,46(1):60-63
简述了变形体外端的含义及作用,介绍了几个轧钢生产中应用增加轧件外端方法来减少金属不均匀变形的实例,用外端理论解释了无缝钢管生产中在管坯尾部定心的原理和作用,提出了张力减径机轧制无缝钢管时采用半无头、无头轧制工艺的设想,并分析了采用半无头、无头轧制工艺生产时可能出现的问题。  相似文献   

7.
使用三辊斜轧空减径设备对管坯进行加工,研究了整个轧制过程中金属的变形与轧机负荷。借助于非线性有限元软件sfFormingGP对斜轧过程进行模拟分析,对比分析了轧制过程中金属变形、受力等参数的合理性。  相似文献   

8.
钢管在减径过程中,减径量一定时,影响其增壁量的主要因素是钢管的轧制温度和张力系数等。就生产中出现的钢管实际增壁量大于设计值的问题,采用不同的轧制工艺进行了试验,探讨了轧制工艺与钢管增壁量之间的关系。  相似文献   

9.
对钢管张力减径机组孔型设计进行了研究,提出了一种新的孔型设计方法。并采用ANSYS/LS-DYNA软件对准48 mm×6 mm的20钢管进行了减径过程有限元模拟,对轧制过程中单辊轧制力、钢管壁厚以及钢管速度的变化进行了分析。最后,进行了钢管三辊减径实验,获得了符合要求的钢管,证实了该孔型设计方法是合理的。  相似文献   

10.
针对张力减径过程中金属变形的摩擦问题,建立了摩擦模型,比较准确地解决了轧制过程仿真时的接触摩擦问题.  相似文献   

11.
以首钢京唐公司2 230 mm冷连轧机为研究对象,针对目前国内外板带材生产中被广泛选用的CVC冷轧机机型,运用ABAQUS仿真软件建立了3D有限元模型,对比分析了ESS冷轧机对带钢边降的控制性能,证明ESS冷轧机对带钢边部减薄的控制较好。通过ESS冷轧机3D有限元模型,实现了对超宽薄极限规格带钢轧制过程的模拟;深入分析了ESS冷轧机对带钢边部减薄的控制规律。结合现场轧制数据,对有限元模型进行了现场验证,模拟值与实测值切合度很高,相对误差在10 μm以内,绝对误差在0.69%以内。  相似文献   

12.
带钢热连轧过程轧制力三维有限元模拟   总被引:1,自引:0,他引:1  
刘洋  周旭东  孟惠霞 《锻压技术》2007,32(5):142-144
在现代计算机控制的带钢生产中,轧制力的设定极其重要.根据宝钢轧制力模型和现场实测数据,结合热连轧过程中带钢三维变形和热力耦合的特点,应用DEFORM-3D软件建立了带钢热连轧前两个道次的有限元模型,模拟了热连轧过程中两个道次的轧制力变化,并与宝钢模型计算值和实测值进行了对比.结果表明,有限元法计算的轧制力与现场实测数据接近,两者误差在5.0%以内,同时有限元法的计算精度高于宝钢轧制力模型,特别是在第一道次,轧制力计算精度高出4.0%,该模拟为现场轧制工艺参数的调整优化提供了重要的参考价值.  相似文献   

13.
为研究累积叠轧过程中TA15钛合金微观组织的演变规律,首先利用DEFORM有限元软件模拟了不同累积叠轧工艺对板材成形热参数的影响,在此基础上通过元胞自动机模拟了TA15钛合金累积叠轧后组织的动态球化过程。结果表明,在累积叠轧过程中,通过减少单道次变形、降低轧制速度并保持一定的温度,可有效地改善TA15钛合金的微观组织和性能。将元胞自动机动态球化模型导入Deform-3D软件,成功地模拟了在热压缩和累积叠轧过程中微观组织的演变。  相似文献   

14.
斜轧穿孔过程中,工件的应变场和温度场分布对金属管坯的成形质量有很大影响。运用三维大变形热力耦合有限元分析软件模拟了TA2合金棒材在曼式穿孔机上进行斜轧穿孔的过程,分析了斜轧穿孔过程中应变场和温度场的变化规律,发现在斜轧穿轧过程中存在明显的纵轧现象,穿孔得到的管坯前端很难保持圆度。通过有限元模拟分析得出的成形规律,对于难变形材料斜轧穿孔技术研究具有重要的理论与实际价值。  相似文献   

15.
根据钢管在张力减径时的变形特点,利用ANSYS软件对21机架张力减径机进行三维建模有限元分析,模拟荒管在减径过程中的变形过程,比较圆孔型参数模拟和椭圆孔型参数模拟时荒管产生“内六方”的趋势和壁厚变化情况.分析认为,采用椭圆孔型参数模拟时,荒管产生“内六方”的趋势较小,且壁厚波动也较小.  相似文献   

16.
采用三维弹塑性有限元技术,针对张力减径,采用椭圆孔型与双圆弧椭圆孔型进行数值模拟分析,通过对比两种孔型的模拟数据及试验结果得出,双圆弧椭圆孔型能够有效改善内六方趋势、降低单机架的轧制力,使轧辊的寿命得到提高。  相似文献   

17.
近年来,冷辗扩技术在中小型轴承套圈加工中得到广泛应用,有效降低了优质轴承批量制造及其成规模优化加工的工艺成本.但市场上尚缺乏中大型冷辗机,影响冷辗技术进一步推广应用.本文通过分析中大型冷辗机的特点,建立LN300型中大型冷辗机的辗压力模型、驱动力模型,以此为基础设计设备各部件的尺寸参数并通过有限元仿真对其进行应力分析....  相似文献   

18.
在沟球环件冷辗扩过程中,环件外径的增长预测和导向辊的位置确定是确保平稳辗扩的条件之一,而这两者的决定因素在于辗扩过程中截面形状变化。采用商业软件ABAQUS/Explicit对冷辗扩过程进行三维建模,预测沟球截面环件的直径增长和截面形状变化过程。在D56G90型冷辗环机上进行实验,测量了不同阶段的环件直径和沟球截面形状。将实验测量结果分别与解析计算结果和有限元计算结果进行比较,得出三者之间的差别,从而发现误差。利用解析结果和实验结果来修正三维有限元模型,以便更加精确地利用有限元模型来预测环件直径的增长规律和截面变化规律。模拟结果可以用于指导环件冷辗扩的工艺制定和生产,以期提高环件的质量。  相似文献   

19.
车轮轧制是采用压轧工艺生产整体车轮的一个重要工步。目前,车轮成形工艺的研究主要集中在预成形及辐板弯曲等工步,对于轧制工艺研究相对较少。该文结合车轮卧式轧制原理及特点,在有限元分析软件ABAQUS中建立了车轮七辊卧式轧制的三维热力耦合有限元分析模型。根据有限元模拟结果,探讨了车轮轧制过程中,轮坯表面金属流动规律,轮坯应力、应变及温度的分布和变化规律,以及轧制力能参数的大小及变化。研究结果为车轮卧式轧制的有限元模拟分析和生产实践提供了一定的参考。  相似文献   

20.
凸轮轴楔横轧成形仿真与应力应变分析   总被引:5,自引:3,他引:2  
提出了一种凸轮轴楔横轧成形新工艺,得出了楔横轧成形凸轮轴轧辊的辊形曲线和轧齐曲线.利用三维有限元软件DEFORM-3D对凸轮轴成形进行了数值模拟,在模拟轧制过程中,轧辊楔面排料的同时轧件上的凸轮轮廓也被轧辊上的凸轮凹槽逐渐轧制生成,并且逐渐被轧齐,得出轧件应力、应变场在凸轮顶端和芯部较小,在与轧辊楔面接触处最大,呈非对称分布的特点.模拟结果表明,用楔横轧工艺轧制凸轮轴是完全可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号