首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogenated carbon films were deposited on various substrates using filtered cathodic arc. Non-uniformity of the film thickness was less than 5% over a 15 cm diameter area. Mechanical, optical (refraction index, extinction coefficient versus wavelength) and electrical properties were investigated as a function of nitrogen flow rate. Deposited coatings demonstrated high hardness of 40–65 GPa, Young's modulus 200–285 GPa, excellent elastic recovery, high critical pressure for scratch formation, and surface smoothness. While the hardness showed a relatively small decrease with nitrogen flow increase, the stress decrease was more significant (8–3.8 GPa). Extremely low wear rates were observed, even at high contact pressures, and no substantial debris was detected indicating that carbon is oxidized during wear. Clear correlation was found between transparency, electrical resistivity and stress of the films. Transparency and resistivity showed a significant rise with an increase of stress. An explanation of the film properties is based on the assumption that the basic characteristics of the deposited films were determined by the relative proportion of two three dimensional complementary type of bonds; the tetrahedral sp3 bonds leading to stiff networks, and the trigonal sp2 arrangments close to fullerene-like, or nanotube-like, structures.  相似文献   

2.
Deposition of the good electron-emitting diamond films on a chrome electrode, which is essential for the development of the actual display device, was successfully carried out. Emission current densities of 1 μA/cm2 and 1 mA/cm2 were measured at the electric field of 6.6 and 12.3 V/μm, respectively. The emission images revealed that the emission site density was ∼104 sites/cm2. Both Raman spectroscopy and scanning electron microscopy showed that these were defective diamond films, similar to those deposited on silicon substrates under similar deposition conditions. Comparing the emission characteristics of the films deposited on silicon and on chrome, we conclude that the interface between the back contact and the film is not the current-limiting factor. Moreover, we discuss the importance of the inclusion of sp2-bonded carbons for good electron emission.  相似文献   

3.
Metal containing amorphous carbon (a-C:Me) films including a-C:Al, a-C:Ti, a-C:Ni, a-C:Si were prepared by the filtered cathodic vacuum arc (FCVA) technique with metal-carbon (5 at.% metal) composite targets. The substrate bias ranging from floating to 1000 V was applied. The wettability of the films was examined using the VCA Optima system from AST Products, Inc. Three types of liquid with different polarities were used to study the surface energy changes of the films. X-ray photoelectron spectroscopy (XPS) was used to analyze the composition and chemical state of the films. Atomic force microscopy (AFM) was employed to characterize the morphology and roughness of the films. The contact angle of the a-C:Me films remains relatively constant with different substrate bias. The Al containing films show the highest contact angle with water, which reaches as high as 101°. The Si containing films show the lowest contact angle approximately 64°. The contact angles of Ni and Ti containing films are approximately 80°, 97°, respectively. The harmonic-mean method was used to calculate the polar and depressive component of the surface energy. The absorption of oxygen on the surface plays an important role on the polar component of the a-C:Me films. The formation of AlO and TiO bonds is responsible for their lower polar component. The metal state Ni results in higher polar component. However, the SiO bond is contributed to the high polar component of a-C:Si films. As all films are atomic scale smooth, the RMS roughness is below 0.5 nm, the roughness does not have obvious effect on the surface energy.  相似文献   

4.
《Diamond and Related Materials》2000,9(9-10):1608-1611
Diamond-like carbon (DLC) films and nitrogen-doped DLC (N-DLC) films were deposited on a molybdenum-coated ceramic substrate using the pulsed laser deposition technique. The structure and surface morphology of the films were examined using X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Field emission measurements were carried out, with the DLC or the N-DLC films as the cathode and ITO-coated glass as the anode. The field emission measurements indicated that the nitrogen doping could lower the turn-on field and increase the current density. It was believed that the interface at the molybdenum–N-DLC film plays an important role in improving the field emission performance of the N-DLC film.  相似文献   

5.
This article is a continuation of a previous work [Diamond & Relat. Mater. 13 (2004) 2113] on the observation of electron field emission patterns from B-doped diamond films, in which a preliminary result of experiment using carbon sponge (carbon foam) as a material for the emission source was presented. In the present work, the carbon foam was first soaked in nanodiamond powder-suspended water overnight, and microwave plasma chemical vapor deposition was done to locally deposit diamond particles and films on the carbon foam. It was found that at an applied electric field of 6 V/μm, the emission current from the diamond-coated carbon foam was 7.6 mA/cm2, which was more than one order of magnitude higher than that from a bare carbon foam.  相似文献   

6.
For tribological applications, the low friction coefficient and high microhardness of diamond-like carbon (DLC) films give significant advantages in cutting and forming non-ferrous materials. The inherently large residual stress of DLC films, however, prevents the depositing of thicker films. This study designed and implemented a compound interface, comprising a series of metal, metal nitride, and metal carbonitride interlayers deposited in a graded structure, between the DLC (a metal-doped a-C:H) film and M2 steel substrates. The tribological performance of the interface was evaluated using a scratch tester and ball-on-disk tribometer. Meanwhile, the failure mechanism of DLC deposited on M2 steel substrates was examined using SEM/EDS and TEM microscopy. Experimental results demonstrate an improved DLC hard coating with superior adhesion strength on the steel substrates.  相似文献   

7.
Highly symmetric ring-shaped field emission patterns were observed from broad-area flat cathodes prepared by growing a film of vertically aligned carbon nanotubes (CNTs) on TiN coated Si substrates. The images were obtained utilizing a luminescent screen of a specially designed triode cell composed of parallel electrodes. The emission rings sporadically appeared during voltage scans in which the emission patterns and cathode currents were recorded. The fine structure and stability of the rings suggests that their formation is due to an emission state of an individual CNT. The observed patterns are consistent with models that predict the formation of emission rings produced by the inhomogeneous electron emission from CNTs. The macroscopic value of the electric field when the rings were observed was between 0.7 and 2.5 V/μm, and the emission current corresponding to individual rings was estimated to be in the range of 2–4 μA. Numerical simulation of electron trajectories for sidewall emission from similar shaped metallic structures is in qualitative and quantitative agreement with the experimentally observed ring-shaped field emission patterns. The results also appear consistent with a recent model [Marchand M, Journet C, Adessi C, Purcell ST. Phys Rev B 2009;80:245425] based on thermal-field emission due to Joule heating.  相似文献   

8.
Nano-structured carbon films were deposited on polycrystalline diamond films grown on Si wafers by means of high-power microwave-plasma chemical-vapour-deposition (MWPCVD) method. Scanning electron microscope images show that the deposited carbon films were composed of wrinkled graphitic nano-sheets with considerably disordered structures and carbon needles on the CVD diamond grains. Field emission (FE) characteristics obtained from such films yielded very high FE currents, being larger than 100 mA/cm2 at a macroscopic electric field of 9.5 V/μm. A possible mechanism of the observed strong FEs is discussed in relation to a modified Fowler–Nordheim (F–N) equation considering field-dependent parameters. Rugged CVD diamond grains played an important role in enhancing the FE current density. These experimental results suggest that some field-dependent effect should be taken into account as well as the surface geometry effect to quantitatively explain the increases in the FE current density observed in the region where no saturation behaviour of the FE current occurred.  相似文献   

9.
《Diamond and Related Materials》2000,9(9-10):1762-1766
In this study, we developed a novel method of synthesizing metal-doped diamond-like carbon films (DLC) using the cathodic arc evaporation (CAE) process. Intense Cr plasma energy activated the decomposition of hydrocarbon source gas C2H2 to form a metal-doped amorphous carbon film on steel substrates. We deposited a Cr interlayer to prevent interdiffusion between DLC and the steel substrates. When the C2H2 partial pressure is higher than 1.3 Pa, the deposition reaction switched from Cr3C2 to DLC formation. The result is a hydrogenated DLC thin film possessing excellent microhardness as high as 3824 Hv(25g), and for which the incorporation of a Cr interface and Cr doping in the DLC matrix ensure film ductility and sufficient film adhesion. We employed Raman spectroscopy to evaluate the influences of reactive gas flow and substrate bias on the DLC composition; we carried out the microstructure and mechanical property measurements by scanning electron microscopy (SEM), X-ray diffraction (XRD), glow discharge optical spectroscopy (GDS) and wear tests.  相似文献   

10.
11.
Strong, conducting, transparent carbon nanotube sheets were prepared by solid-state draw from well-ordered, aligned multiwalled carbon nanotube (MWCNT) forests [Zhang et al., 2005] [1]. Study of electron field emission from such transparent MWCNT sheets shows threshold fields of less than 0.5 V/μm with current densities high enough for display applications. Step-like field emission current increase and hysteresis behavior in I-V curves has been observed. The origin of such behavior is discussed in terms of mechanical rearrangement of the nanotube network in high electric field. Studied MWCNT transparent sheet field emission cathodes have several advantages when used as multi-functional electrodes. They are high current, high stability, transparent, and flexible field emission sources and can be used in an inverted geometry, with cathode being in front of the light emitting plate. At the same time transparent CNT sheets may serve as a transparent conducting electrode for electrical connection and pixel addressing in field emission displays (FEDs). Also, these sheets can be used as an optical polarizer in FEDs.  相似文献   

12.
The friction coefficients have been investigated in amorphous diamond-like carbon (DLC) films deposited by a dual ECR–r.f. method, as a function of r.f. substrate bias in relation with the H content and bonding. Combined infrared absorption, elastic recoil detection analysis and tribological tests are used to characterize fully the films in their as-deposited state. Friction coefficients (μ) of the coatings against sapphire balls are determined in air at room temperature. The results indicate clearly that the samples exhibit high compressive stresses and the friction coefficients are found to be low and are affected by the magnitude of the biaxial stress and the microstructure of the films.  相似文献   

13.
Diamond-like carbon (DLC) films have been deposited using electron cyclotron resonance chemical vapor deposition (ECR-CVD) under various microwave power conditions. Langmuir probe measurement and optical emission spectroscopy (OES) were used to characterize the ECR plasma, while the films were characterized using Raman and infrared (IR) spectroscopies, hardness and optical gap measurements. It was found that the ion density and all signal peaks in the optical emission (OE) spectra increased monotonously following the increase in microwave power. Raman spectra and optical gap measurements indicate that the films become more graphitic with lower content of sp3-hybridized carbon atoms as the microwave power was increased. IR and hardness measurements indicate a reduction in hydrogen content and decrease in hardness for the film produced at relatively high microwave powers. A deposition mechanism is described which involved the ion bombardment of film surfaces and hydrogen–surface interactions. The deposition rate of DLC film is correlated to the ion density and CH3 density.  相似文献   

14.
In this work, the formation of hard a-C:H films deposited on the cathode of an r.f. sputtering system through the decomposition of methane gas was explained using the subimplantation model. Even though in a r.f. plasma deposition the ions striking the films surface are not monoenergetic, the stress data match the theoretical model proposed by C.A. Davis. The stress versus bias plot shows a behavior similar to those already obtained for ta-C and ta-C:H films, which are prepared using monoenergetic ion beam.  相似文献   

15.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

16.
Good-quality diamond-like carbon films (6 at.% H2, 2400 kgf/mm2 microhardness, 2.7 eV bandgap, higly insulating) have been obtained by the DC glow discharge decomposition of acetylene. Mass spectroscopic thermal effusion measurements were carried out on the films deposited under different deposition conditions. Analyses of hydrogen in conjunction with hydrocarbon effusing species yield information on the microstructure and nature of C---H bonding configurations. It is shown to be a useful analytical tool to study hydrogenated amorphous carbon films of different microstructures varying from polymer-like to diamond-like.  相似文献   

17.
《Diamond and Related Materials》2000,9(9-10):1604-1607
Diamond films with different crystal structures, morphologies and surface characteristics were synthesized under various deposition parameters and annealing conditions by the microwave plasma chemical vapor deposition (MWPCVD) method using gas mixtures of CH4, CO and H2. The effects of CH4 concentrations, grain sizes, grain orientations, film thicknesses and annealing technologies in various ambient gases on planar electron emission of diamond films were studied. The results show that small-grained and (011)-oriented diamond films deposited under the condition of high CH4 concentration present the properties of high emission current and low threshold voltage; the emission current increases with decreasing the film thickness. There are largest current density and lowest threshold voltage at the film thickness of 1.5 μm. The annealing in H2 after deposition appears to be more beneficial in lowering the threshold voltage, increasing emission current and improving stability for electron emission of films than annealing in N2 or Ar. These results indicate that diamond thin films with high emission current, low threshold voltage and high stability can be obtained by selecting suitable deposition parameters of diamond films.  相似文献   

18.
19.
Tetrahedrally bonded amorphous carbon (ta-C) and nitrogen doped (ta-C:N) films were obtained at room temperature in a filtered cathodic vacuum arc (FCVA) system incorporating an off-plane double bend (S-bend) magnetic filter. The influence of the negative bias voltage applied to substrates (from −20 to −350 V) and the nitrogen background pressure (up to 10−3 Torr) on film properties was studied by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and X-ray reflectivity (XRR). The ta-C films showed sp3 fractions between 84% and 88%, and mass densities around 3.2 g/cm3 in the wide range of bias voltage studied. In contrast, the compressive stress showed a maximum value of 11 GPa for bias voltages around −90 V, whereas for lower and higher bias voltages the stress decreased to 6 GPa. As for the ta-C:N films grown at bias voltages below −200 V and with N contents up to 7%, it has been found that the N atoms were preferentially sp3 bonded to the carbon network with a reduction in stress below 8 GPa. Further increase in bias voltage or N content increased the sp2 fraction, leading to a reduction in film density to 2.7 g/cm3.  相似文献   

20.
The nanoindentation-induced deformation behaviour of a ta-C (tetrahedral amorphous carbon) coating deposited on to a silicon substrate by a filtered vacuum cathodic vapour arc technique was investigated. The 0.17-μm-thick ta-C coating was subjected to nanoindentation with a spherical indenter and the residual indents were examined by cross-sectional transmission electron microscopy. The hard (~ 30 GPa) ta-C coatings exhibited very little localized plastic compression, unlike the softer amorphous carbon coatings deposited by plasma-assisted chemical vapour deposition. However, neither through-thickness cracks nor delamination was observed in the coating for the loads studied. Rather, the silicon substrate exhibited plastic deformation for indentation loads as low as 10 mN and at higher loads it showed evidence of both phase transformation and cracking. These microstructural features were correlated to the observed discontinuities in the load-displacement curves. Further, it was observed that even a very thin coating can modify the primary deformation mechanism from phase transformation in uncoated Si to predominantly plastic deformation in the underlying substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号